首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   219篇
  免费   10篇
  2023年   1篇
  2022年   14篇
  2021年   15篇
  2020年   9篇
  2019年   6篇
  2018年   7篇
  2017年   4篇
  2016年   10篇
  2015年   19篇
  2014年   19篇
  2013年   18篇
  2012年   11篇
  2011年   12篇
  2010年   14篇
  2009年   6篇
  2008年   6篇
  2007年   8篇
  2006年   10篇
  2005年   13篇
  2004年   4篇
  2003年   5篇
  2002年   8篇
  2001年   2篇
  1999年   2篇
  1998年   1篇
  1997年   3篇
  1995年   1篇
  1990年   1篇
排序方式: 共有229条查询结果,搜索用时 15 毫秒
181.
Migratory front-back polarity emerges from the cooperative effect of myosin IIA (MIIA) and IIB (MIIB) on adhesive signaling. We demonstrate here that, during polarization, MIIA and MIIB coordinately promote localized actomyosin bundling, which generates large, stable adhesions that do not signal to Rac and thereby form the cell rear. MIIA formed dynamic actomyosin proto-bundles that mark the cell rear during spreading; it also bound to actin filament bundles associated with initial adhesion maturation in protrusions. Subsequent incorporation of MIIB stabilized the adhesions and actomyosin filaments with which it associated and formed a stable, extended rear. These adhesions did not turn over and no longer signal to Rac. Microtubules fine-tuned the polarity by positioning the front opposite the MIIA/MIIB-specified rear. Decreased Rac signaling in the vicinity of the MIIA/MIIB-stabilized proto-bundles and adhesions was accompanied by the loss of Rac guanine nucleotide exchange factor (GEFs), like βPIX and DOCK180, and by inhibited phosphorylation of key residues on adhesion proteins that recruit and activate Rac GEFs. These observations lead to a model for front-back polarity through local GEF depletion.  相似文献   
182.
Methionine dietary restriction (MetR), like dietary restriction (DR), increases rodent maximum longevity. However, the mechanism responsible for the retardation of aging with MetR is still not entirely known. As DR decreases oxidative damage and mitochondrial free radical production, it is plausible to hypothesize that a decrease in oxidative stress is the mechanism for longevity extension with MetR. In the present investigation male Wistar rats were subjected to isocaloric 40% MetR during 7 weeks. It was found that 40% MetR decreases heart mitochondrial ROS production at complex I during forward electron flow, lowers oxidative damage to mitochondrial DNA and proteins, and decreases the degree of methylation of genomic DNA. No significant changes occurred for mitochondrial oxygen consumption, the amounts of the four respiratory complexes (I to IV), and the mitochondrial protein apoptosis-inducing factor (AIF). These results indicate that methionine can be the dietary factor responsible for the decrease in mitochondrial ROS generation and oxidative stress, and likely for part of the increase in longevity, that takes place during DR. They also highlight some of the mechanisms involved in the generation of these beneficial effects.  相似文献   
183.

Background

Molecular signatures may become of use in clinical practice to assess the prognosis of breast cancers. However, although international consensus conferences sustain the use of these new markers in the near future, concerns remain about their degree of discordance and cost-effectiveness in different international settings. The present study aims to validate Ki67 as prognostic factor in a large cohort of early-stage (pT1–pT2, pN0) breast cancer patients.

Methods

456 patients treated in 1995–1996 were identified in the Institut Curie database. Ki67 (MIB1) was retrospectively assessed by immunohistochemistry for all cases. The prognostic value of this index was compared to that of histological grade (HG), Estrogen receptor (ER) and HER2 status. Distant disease free interval, loco-regional recurrence, time-lapse from first metastatic diagnosis to death were analyzed.

Results

All 456 patients were treated by lumpectomy plus axillary dissection and radiotherapy. 27 patients (5.9%) received systemic treatment. Tumors were classified as HG1 in 35%, HG2 in 42% and HG3 in 23% of cases. ER was expressed in 86% of the tumors, HER2 in 5% and 14% were triple negative. The median follow-up was 151 [5–191] months. Distant and loco-regional disease recurrences were observed in 16% and 18%, respectively. High (>20%) Ki67 rate [HR = 3 (1.8–4.8), p<10e−06] and HG3 [HR = 4.4 (2.2–8.6), p = 0.00002] were associated with an increased rate of distant relapse. In multivariate analysis, the Ki67 remained the only significant prognostic factor in the subgroups of ER positive HER2 negative [HR = 2.6 (1.5–4.6), p = 0.0006] and ER positive HER2 negative HG2 tumors [HR = 2.2 (1.01–4.8), p = 0.04].

Conclusions

We validate the prognosis value of the Ki67 rate in small size node negative breast cancer. We conclude that Ki67 is a potential cost-effective decision marker for adjuvant therapy in early-stage HG2, pT1–pT2, pN0, breast cancers.  相似文献   
184.
Cell-to-cell metabolic interactions are crucial for the functioning of the nervous system and depend on the differential expression of glucose transporters (GLUTs) and monocarboxylate transporters (MCTs). The olfactory receptor neurons (ORNs) and supporting cells (SCs) of the olfactory epithelium exhibit a marked polarization and a tight morphological interrelationship, suggesting an active metabolic interaction. We examined the expression and localization of MCTs and GLUTs in the olfactory mucosa and found a stereotyped pattern of expression. ORNs exhibited GLUT1 labeling in soma, dendrites, and axon. SCs displayed GLUT1 labeling throughout their cell length, whereas MCT1 and GLUT3 localize to their apical portion, possibly including the microvilli. Additionally, GLUT1 and MCT1 were detected in endothelial cells and GLUT1, GLUT3, and MCT2 in the cells of the Bowman's gland. Our observations suggest an energetic coupling between SCs and Bowman's gland cells, where glucose crossing the blood-mucosa barrier through GLUT1 is incorporated by these epithelial cells. Once in the SCs, glucose can be metabolized to lactate, which could be transported by MCTs into the Bowman's gland duct, where it can be used as metabolic fuel. Furthermore, SCs may export glucose and lactate to the mucous layer, where they may serve as possible energy supply to the cilia.  相似文献   
185.

Background and Aims

The mobile carbon supply to different compartments of a tree is affected by climate, but its impact on cell-wall chemistry and mechanics remains unknown. To understand better the variability in root growth and biomechanics in mountain forests subjected to substrate mass movement, we investigated root chemical and mechanical properties of mature Abies georgei var. smithii (Smith fir) growing at different elevations on the Tibet–Qinghai Plateau.

Methods

Thin and fine roots (0·1–4·0 mm in diameter) were sampled at three different elevations (3480, 3900 and 4330 m, the last corresponding to the treeline). Tensile resistance of roots of different diameter classes was measured along with holocellulose and non-structural carbon (NSC) content.

Key Results

The mean force necessary to break roots in tension decreased significantly with increasing altitude and was attributed to a decrease in holocellulose content. Holocellulose was significantly lower in roots at the treeline (29·5 ± 1·3 %) compared with those at 3480 m (39·1 ± 1·0 %). Roots also differed significantly in NSC, with 35·6 ± 4·1 mg g−1 dry mass of mean total soluble sugars in roots at 3480 m and 18·8 ± 2·1 mg g−1 dry mass in roots at the treeline.

Conclusions

Root mechanical resistance, holocellulose and NSC content all decreased with increasing altitude. Holocellulose is made up principally of cellulose, the biosynthesis of which depends largely on NSC supply. Plants synthesize cellulose when conditions are optimal and NSC is not limiting. Thus, cellulose synthesis in the thin and fine roots measured in our study is probably not a priority in mature trees growing at very high altitudes, where climatic factors will be limiting for growth. Root NSC stocks at the treeline may be depleted through over-demand for carbon supply due to increased fine root production or winter root growth.  相似文献   
186.
Cell morphology is altered in the migration process, and the underlying cytoskeleton remodeling is highly dependent of intracellular Ca2+ concentration. Many calcium channels are known to be involved in migration. Inositol 1,4,5-trisphosphate receptor (IP3R) was demonstrated to be implicated in breast cancer cells migration, but its involvement in morphological changes during the migration process remains unclear. In the present work, we showed that IP3R3 expression was correlated to cell morphology. IP3R3 silencing induced rounding shape and decreased adhesion in invasive breast cancer cell lines. Moreover, IP3R3 silencing decreased ARHGAP18 expression, RhoA activity, Cdc42 expression and Y861FAK phosphorylation. Interestingly, IP3R3 was able to regulate profilin remodeling, without inducing any myosin II reorganization. IP3R3 silencing revealed an oscillatory calcium signature, with a predominant oscillating profile occurring in early wound repair. To summarize, we demonstrated that IP3R3 is able to modulate intracellular Ca2+ availability and to coordinate the remodeling of profilin cytoskeleton organization through the ARHGAP18/RhoA/mDia1/FAK pathway.  相似文献   
187.

Background and aims

Plant phenology is a sensitive indicator of plant response to climate change. Observations of phenological events belowground for most ecosystems are difficult to obtain and very little is known about the relationship between tree shoot and root phenology. We examined the influence of environmental factors on fine root production and mortality in relation with shoot phenology in hybrid walnut trees (Juglans sp.) growing in three different climates (oceanic, continental and Mediterranean) along a latitudinal gradient in France.

Methods

Eight rhizotrons were installed at each site for 21 months to monitor tree root dynamics. Root elongation rate (RER), root initiation quantity (RIQ) and root mortality quantity (RMQ) were recorded frequently using a scanner and time-lapse camera. Leaf phenology and stem radial growth were also measured. Fine roots were classified by topological order and 0–1 mm, 1–2 mm and 2–5 mm diameter classes and fine root longevity and risk of mortality were calculated during different periods over the year.

Results

Root growth was not synchronous with leaf phenology in any climate or either year, but was synchronous with stem growth during the late growing season. A distinct bimodal pattern of root growth was observed during the aerial growing season. Mean RER was driven by soil temperature measured in the month preceding root growth in the oceanic climate site only. However, mean RER was significantly correlated with mean soil water potential measured in the month preceding root growth at both Mediterranean (positive relationship) and oceanic (negative relationship) sites. Mean RIQ was significantly higher at both continental and Mediterranean sites compared to the oceanic site. Soil temperature was a driver of mean RIQ during the late growing season at continental and Mediterranean sites only. Mean RMQ increased significantly with decreasing soil water potential during the late aerial growing season at the continental site only. Mean root longevity at the continental site was significantly greater than for roots at the oceanic and Mediterranean sites. Roots in the 0–1 mm and 1–2 mm diameter classes lived for significantly shorter periods compared to those in the 2–5 mm diameter class. First order roots (i.e. the primary or parents roots) lived longer than lateral branch roots at the Mediterranean site only and first order roots in the 0–1 mm diameter class had 44.5% less risk of mortality than that of lateral roots for the same class of diameter.

Conclusions

We conclude that factors driving root RER were not the same between climates. Soil temperature was the best predictor of root initiation at continental and Mediterranean sites only, but drivers of root mortality remained largely undetermined.
  相似文献   
188.
Coral Reefs - The importance of herbivory in both preventing and reversing shifts to macroalgae dominance on coral reefs has been extensively investigated. However, most studies examining the...  相似文献   
189.
A Burkard spore trap was used to monitor daily fungal spore counts in the atmosphere of Melbourne (Australia) between October 1991 and December 1994. Annual total spore counts varied widely (range 345 770 in 1994 to 1 106 037 in 1992), of which approximately half were identified asCladosporium sp. and only about 1%Alternaria sp. Highest daily total spore counts were recorded late-summer through to mid-winter, probably corresponding to senescence of annual grasses and leaf fall. Spore counts were negatively correlated with rainfall (P<0.05), significantly correlated with average temperature (P<0.001), and showed a highly significant linear relationship with cumulative temperature throughout the year.  相似文献   
190.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号