首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2938篇
  免费   185篇
  国内免费   5篇
  2022年   40篇
  2021年   76篇
  2020年   49篇
  2019年   72篇
  2018年   72篇
  2017年   69篇
  2016年   92篇
  2015年   106篇
  2014年   152篇
  2013年   145篇
  2012年   200篇
  2011年   171篇
  2010年   135篇
  2009年   101篇
  2008年   165篇
  2007年   180篇
  2006年   160篇
  2005年   123篇
  2004年   142篇
  2003年   109篇
  2002年   114篇
  2001年   41篇
  2000年   54篇
  1999年   34篇
  1998年   21篇
  1997年   16篇
  1996年   10篇
  1992年   14篇
  1991年   22篇
  1990年   29篇
  1989年   17篇
  1988年   27篇
  1987年   25篇
  1986年   31篇
  1985年   25篇
  1984年   15篇
  1983年   24篇
  1980年   10篇
  1979年   31篇
  1978年   21篇
  1977年   18篇
  1976年   9篇
  1975年   15篇
  1974年   19篇
  1973年   14篇
  1972年   17篇
  1971年   13篇
  1969年   8篇
  1968年   8篇
  1967年   13篇
排序方式: 共有3128条查询结果,搜索用时 296 毫秒
61.
Escherichia coli single-stranded DNA binding protein (SSB) plays essential roles in DNA replication, recombination and repair. SSB functions as a homotetramer with each subunit possessing a DNA binding domain (OB-fold) and an intrinsically disordered C-terminus, of which the last nine amino acids provide the site for interaction with at least a dozen other proteins that function in DNA metabolism. To examine how many C-termini are needed for SSB function, we engineered covalently linked forms of SSB that possess only one or two C-termini within a four-OB-fold “tetramer”. Whereas E. coli expressing SSB with only two tails can survive, expression of a single-tailed SSB is dominant lethal. E. coli expressing only the two-tailed SSB recovers faster from exposure to DNA damaging agents but accumulates more mutations. A single-tailed SSB shows defects in coupled leading and lagging strand DNA replication and does not support replication restart in vitro. These deficiencies in vitro provide a plausible explanation for the lethality observed in vivo. These results indicate that a single SSB tetramer must interact simultaneously with multiple protein partners during some essential roles in genome maintenance.  相似文献   
62.
Dysfunction of two structurally and functionally related proteins, FUS and TAR DNA-binding protein of 43 kDa (TDP-43), implicated in crucial steps of cellular RNA metabolism can cause amyotrophic lateral sclerosis (ALS) and certain other neurodegenerative diseases. The proteins are intrinsically aggregate-prone and form non-amyloid inclusions in the affected nervous tissues, but the role of these proteinaceous aggregates in disease onset and progression is still uncertain. To address this question, we designed a variant of FUS, FUS 1–359, which is predominantly cytoplasmic, highly aggregate-prone, and lacks a region responsible for RNA recognition and binding. Expression of FUS 1–359 in neurons of transgenic mice, at a level lower than that of endogenous FUS, triggers FUSopathy associated with severe damage of motor neurons and their axons, neuroinflammatory reaction, and eventual loss of selective motor neuron populations. These pathological changes cause abrupt development of a severe motor phenotype at the age of 2.5–4.5 months and death of affected animals within several days of onset. The pattern of pathology in transgenic FUS 1–359 mice recapitulates several key features of human ALS with the dynamics of the disease progression compressed in line with shorter mouse lifespan. Our data indicate that neuronal FUS aggregation is sufficient to cause ALS-like phenotype in transgenic mice.  相似文献   
63.
Phosphatidylinositol 3-kinases (PI3K) participate in numerous signaling pathways, and control distinct biological functions. Studies using pan-PI3K inhibitors suggest roles for PI3K in osteoclasts, but little is known about specific PI3K isoforms in these cells. Our objective was to determine effects of isoform-selective PI3K inhibitors on osteoclasts. The following inhibitors were investigated (targets in parentheses): wortmannin and LY294002 (pan-p110), PIK75 (α), GDC0941 (α, δ), TGX221 (β), AS252424 (γ), and IC87114 (δ). In addition, we characterized a new potent and selective PI3Kδ inhibitor, GS-9820, and explored roles of PI3K isoforms in regulating osteoclast function. Osteoclasts were isolated from long bones of neonatal rats and rabbits. Wortmannin, LY294002, GDC0941, IC87114, and GS-9820 induced a dramatic retraction of osteoclasts within 15–20 min to 65–75% of the initial area. In contrast, there was no significant retraction in response to vehicle, PIK75, TGX221, or AS252424. Moreover, wortmannin and GS-9820, but not PIK75 or TGX221, disrupted actin belts. We examined effects of PI3K inhibitors on osteoclast survival. Whereas PIK75, TGX221, and GS-9820 had no significant effect on basal survival, all blocked RANKL-stimulated survival. When studied on resorbable substrates, osteoclastic resorption was suppressed by wortmannin and inhibitors of PI3Kβ and PI3Kδ, but not other isoforms. These data are consistent with a critical role for PI3Kδ in regulating osteoclast cytoskeleton and resorptive activity. In contrast, multiple PI3K isoforms contribute to the control of osteoclast survival. Thus, the PI3Kδ isoform, which is predominantly expressed in cells of hematopoietic origin, is an attractive target for anti-resorptive therapeutics.  相似文献   
64.
Many methanotrophs have been shown to synthesize methanobactin, a novel biogenic copper-chelating agent or chalkophore. Methanobactin binds copper via two heterocyclic rings with associated enethiol groups. The structure of methanobactin suggests that it can bind other metals, including mercury. Here we report that methanobactin from Methylosinus trichosporium OB3b does indeed bind mercury when added as HgCl2 and, in doing so, reduced toxicity associated with Hg(II) for both Alphaproteobacteria methanotrophs, including M. trichosporium OB3b, M. trichosporium OB3b ΔmbnA (a mutant defective in methanobactin production), and Methylocystis sp. strain SB2, and a Gammaproteobacteria methanotroph, Methylomicrobium album BG8. Mercury binding by methanobactin was evident in both the presence and absence of copper, despite the fact that methanobactin had a much higher affinity for copper due to the rapid and irreversible binding of mercury by methanobactin. The formation of a gray precipitate suggested that Hg(II), after being bound by methanobactin, was reduced to Hg(0) but was not volatilized. Rather, mercury remained associated with methanobactin and was also found associated with methanotrophic biomass. It thus appears that although the mercury-methanobactin complex was cell associated, mercury was not removed from methanobactin. The amount of biomass-associated mercury in the presence of methanobactin from M. trichosporium OB3b was greatest for M. trichosporium wild-type strain OB3b and the ΔmbnA mutant and least for M. album BG8, suggesting that methanotrophs may have selective methanobactin uptake systems that may be based on TonB-dependent transporters but that such uptake systems exhibit a degree of infidelity.  相似文献   
65.
The lignin-degrading, biopulping white-rot fungus Physisporinus rivulosus secretes several laccases of distinct features such as thermostability, extremely low pH optima and thermal activation for oxidation of phenolic substrates. Here we describe the cloning, heterologous expression and structural and enzymatic characterisation of two previously undescribed P. rivulosus laccases. The laccase cDNAs were expressed in the methylotrophic yeast Pichia pastoris either with the native or with Saccharomyces cerevisiae α-factor signal peptide. The specific activity of rLac1 and rLac2 was 5 and 0.3 μkat/μg, respectively. However, mutation of the last amino acid in the rLac2 increased the specific laccase activity by over 50-fold. The recombinant rLac1 and rLac2 enzymes demonstrated low pH optima with both 2,6-dimethoxyphenol (2,6-DMP) and 2,2′-azino-bis(3-ethylbenzathiazoline-6-sulfonate). Both recombinant laccases showed moderate thermotolerance and thermal activation at +60 °C was detected with rLac1. By homology modelling, it was deduced that Lac1 and Lac2 enzymes demonstrate structural similarity with the Trametes versicolor and Trametes trogii laccase crystal structures. Comparison of the protein architecture at the reducing substrate-binding pocket near the T1-Cu site indicated the presence of five amino acid substitutions in the structural models of Lac1 and Lac2. These data add up to our previous reports on laccase production by P. rivulosus during biopulping and growth on Norway spruce. Heterologous expression of the novel Lac1 and Lac2 isoenzymes in P. pastoris enables the detailed study of their properties and the evaluation of their potential as oxidative biocatalysts for conversion of wood lignin, lignin-like compounds and soil-polluting xenobiotics.  相似文献   
66.
67.
Deformations of cell nuclei accompany a number of essential intracellular processes. Although evidence is being accumulated on the primary role actin structures play in controlling the shape of the nucleus, the mechanisms behind this phenomenon remain unknown. Here, we consider theoretically a specific paradigm of nuclear deformation, and a related actin rearrangement, in T cells stimulated by contact with a bead covered by surrogate antigens. We suggest that the nucleus is deformed by the elastic forces developed within a cylindrical layer of polymerized actin, which is generated as a result of the receptor-mediated T-cell activation. We substantiate this proposal with a theoretical analysis of mutual deformations in the actin layer and the nucleus, which recovers the experimentally observed nuclear shapes. Furthermore, we evaluate the forces developed by the actin polymerization that drives the nuclear deformation. The model predicts the mode of actin polymerization generated by the surrogate antigens covering a bead and the values of the elastic moduli of the nuclear shell. We provide a qualitative experimental support for the model assumptions by visualizing the stages of nuclear shape change and the corresponding evolution of the cortical actin.  相似文献   
68.
Intracellular NAD(P)H oxidoreductases are a class of diverse enzymes that are the key players in a number of vital processes. The method we present and validate here is based on the ability of many NAD(P)H oxidoreductases to reduce the superoxide probe lucigenin, which is structurally similar to flavins, to its highly fluorescent water-insoluble derivative dimethylbiacridene. Two modifications of the method are proposed: (i) an express method for tissue homogenate and permeabilized cells in suspensions and (ii) a standard procedure for cells in culture and acute thin tissue slices. The method allows one to assess, visualize, and localize, using fluorescent markers of cellular compartments, multiple NADH and NADPH oxidoreductase activities. The application of selective inhibitors (e.g., VAS2870, a NOX2 inhibitor; plumbagin, a NOX4 inhibitor) allows one to distinguish and compare specific NAD(P)H oxidoreductase activities in cells and tissues and to attribute them to known enzymes. The method is simple, rapid, and flexible. It can be easily adapted to a variety of tasks. It will be useful for investigations of the role of various NAD(P)H oxidoreductases in a number of physiological and pathophysiological processes.  相似文献   
69.
The dependence of secretion efficiency in Pichia pastoris cells on the copy number of proregions in leader polypeptides has been studied. The humanized light kappa-chain of the murine H3-1 antibody was used as a reporter protein. The leader pre-pro-polypeptides were composed of the signal peptide (preregion) from the α-factor precursors of Saccharomyces cerevisiae and a variable number of proregions from the prepro-precursors of the α-factor or the Hsp150p protein of S. cerevisiae or Hsp150p of P. pastoris. An increase in the proregion copy number either resulted in an almost 1.5-fold increase or a fivefold decrease in secretion depending on the proregion used. It was concluded that the enhancement of the proregion copy number could be of potential value for the intensification of protein secretion in P. pastoris.  相似文献   
70.
In oxygenic phototrophic organisms, the phytyl ‘tail’ of chlorophyll a is formed from a geranylgeranyl residue by the enzyme geranylgeranyl reductase. Additionally, in oxygenic phototrophs, phytyl residues are the tail moieties of tocopherols and phylloquinone. A mutant of the cyanobacterium Synechocystis sp. PCC 6803 lacking geranylgeranyl reductase, ΔchlP, was compared to strains with specific deficiencies in either tocopherols or phylloquinone to assess the role of chlorophyll a phytylatation (versus geranylgeranylation). The tocopherol‐less Δhpt strain grows indistinguishably from the wild‐type under ‘standard’ light photoautotrophic conditions, and exhibited only a slightly enhanced rate of photosystem I degradation under strong irradiation. The phylloquinone‐less ΔmenA mutant also grows photoautotrophically, albeit rather slowly and only at low light intensities. Under strong irradiation, ΔmenA retained its chlorophyll content, indicative of stable photosystems. ΔchlP may only be cultured photomixotrophically (due to the instability of both photosystems I and II). The increased accumulation of myxoxanthophyll in ΔchlP cells indicates photo‐oxidative stress even under moderate illumination. Under high‐light conditions, ΔchlP exhibited rapid degradation of photosystems I and II. In conclusion, the results demonstrate that chlorophyll a phytylation is important for the (photo)stability of photosystems I and II, which, in turn, is necessary for photoautotrophic growth and tolerance of high light in an oxygenic environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号