首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   258篇
  免费   29篇
  2023年   4篇
  2022年   8篇
  2021年   11篇
  2020年   8篇
  2019年   8篇
  2018年   19篇
  2017年   14篇
  2016年   13篇
  2015年   19篇
  2014年   22篇
  2013年   18篇
  2012年   17篇
  2011年   30篇
  2010年   15篇
  2009年   8篇
  2008年   16篇
  2007年   7篇
  2006年   10篇
  2005年   9篇
  2004年   6篇
  2003年   7篇
  2002年   3篇
  2001年   2篇
  1999年   1篇
  1998年   3篇
  1988年   1篇
  1979年   2篇
  1977年   1篇
  1975年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1964年   1篇
排序方式: 共有287条查询结果,搜索用时 20 毫秒
101.
Increasing the levels of CD20 expression in cells that harbor low CD20 levels may enhance their responsiveness to CD20-specific antibody therapies. Here, we examined the regulation of CD20 expression after treatment with 0.5-2.0 Gy X-irradiation and hydrogen peroxide (H(2)O(2)), in the presence or absence of known antioxidants, in the Burkitt lymphoma cell lines Daudi and Raji. Irradiation of cells enhanced cell-surface CD20 expression; the kinetics and extent of this change were cell-type specific and time-dependent. The kinetics of reactive oxygen species generation and changes in mitochondrial membrane potential after irradiation were also correlated with changes in CD20 expression. Raji and Daudi cells treated with H(2)O(2) showed a 2-to 2.5-fold increase in CD20 expression at 12 and 20 h, respectively. Buthionine sulfoximine, which depletes glutathione, also increased surface CD20, whereas antioxidants, such as PEG-catalase, PEG-SOD, vitamin C, and amifostine, decreased CD20 expression induced by radiation or H(2)O(2). The antioxidant-mediated decrease in CD20 expression induced by radiation or H(2)O(2) suggests a mechanism involving redox regulation. These results demonstrate the critical role of radiation-induced oxidative stress in CD20 expression and may have implications for defining and improving the efficacy of CD20-targeted antibody therapy and radioimmunotherapy.  相似文献   
102.

Background

Barrett''s esophagus predisposes to esophageal adenocarcinoma. However, the value of endoscopic surveillance in Barrett''s esophagus has been debated because of the low incidence of esophageal adenocarcinoma in Barrett''s esophagus. Moreover, high inter-observer and sampling-dependent variation in the histologic staging of dysplasia make clinical risk assessment problematic. In this study, we developed a 3-tiered risk stratification strategy, based on systematically selected epigenetic and clinical parameters, to improve Barrett''s esophagus surveillance efficiency.

Methods and Findings

We defined high-grade dysplasia as endpoint of progression, and Barrett''s esophagus progressor patients as Barrett''s esophagus patients with either no dysplasia or low-grade dysplasia who later developed high-grade dysplasia or esophageal adenocarcinoma. We analyzed 4 epigenetic and 3 clinical parameters in 118 Barrett''s esophagus tissues obtained from 35 progressor and 27 non-progressor Barrett''s esophagus patients from Baltimore Veterans Affairs Maryland Health Care Systems and Mayo Clinic. Based on 2-year and 4-year prediction models using linear discriminant analysis (area under the receiver-operator characteristic (ROC) curve: 0.8386 and 0.7910, respectively), Barrett''s esophagus specimens were stratified into high-risk (HR), intermediate-risk (IR), or low-risk (LR) groups. This 3-tiered stratification method retained both the high specificity of the 2-year model and the high sensitivity of the 4-year model. Progression-free survivals differed significantly among the 3 risk groups, with p = 0.0022 (HR vs. IR) and p<0.0001 (HR or IR vs. LR). Incremental value analyses demonstrated that the number of methylated genes contributed most influentially to prediction accuracy.

Conclusions

This 3-tiered risk stratification strategy has the potential to exert a profound impact on Barrett''s esophagus surveillance accuracy and efficiency.  相似文献   
103.
Cancers have been revealed to be extremely heterogenous in terms of the frequency and types of mutations present in cells from different malignant tumors. Thus, it is likely that uniform clinical treatment is not optimal for all patients, and that the development of individualized therapeutic regimens may be beneficial. We describe the generation of multiple, unique small peptides nine to thirty-four amino acids in length which, when labeled with the radioisotope (32)P, bind with vastly differing efficiencies to cell lines derived from different colon adenocarcinomas. In addition, the most effective of these peptides permanently transfers the (32)P radioisotope to colorectal cancer cellular proteins within two hours at a rate that is more than 150 times higher than in cell lines derived from other cancers or from the normal tissues tested. Currently, the only two FDA-approved radioimmunotherapeutic agents in use both employ antibodies directed against the B cell marker CD20 for the treatment of non-Hodgkin's lymphoma. By using the method described herein, large numbers of different (32)P-labeled peptides can be readily produced and assayed against a broad spectrum of cancer types. This report proposes the development and use of (32)P-labeled peptides as potential individualized peptide-binding therapies for the treatment of colon adenocarcinoma patients.  相似文献   
104.
Aim: To investigate peripheral blood monocytes/macrophages (Mo/M?) paraoxonase 2 (PON2) in diabetes and the factors modulating its activity.

Methods: One hundred and eighteen patients with newly diagnosed uncomplicated type 2 diabetes mellitus were compared regarding clinical, biochemical and oxidative stress parameters with 80 healthy subjects. The capacity of the peripheral blood mononuclear cells (PBMNC) to release pro-oxidants and to neutralise them was determined by measuring the respiratory burst (RB) and the intracellular antioxidant enzyme PON2. In vitro experiments were conducted on a differentiated monocytes cell line (dU937) that was exposed to serum deprivation followed by addition of isolated lipoproteins (VLDL or LDL).

Results: Paraoxonase 2 activity in Mo/M? was significantly lower in type 2 diabetes patients (0.042?±?0.044 vs 0.165?±?0.133U lactonase activity/mg protein in controls, p?1c) and insulin resistance (HOMA-IR). In multivariate regression models, 15–34% of the PON2 variance was explained by diabetes. The in vitro addition of VLDL normalised the RB of serum deprived dU937 cells, S? (to 82?±?18% of the cells incubated with serum, S+) and PON2 activity (from 0.524?±?0.061 in S???to 0.298?±?0.048?U/mg protein). In contrast, when LDL was added, the RB remained lower (61?±?12% of S+, p?=?.03) and PON2 higher (0.580?±?0.030?U/mg protein, p?=?.003).

Conclusions: The decrease in monocyte/macrophage PON2 enzymatic activity observed in type 2 diabetes cannot be totally explained by abdominal obesity and insulin resistance. The underlying molecular mechanisms need to be identified.  相似文献   
105.
Transgenic Panicum virgatum L. silencing (KD) or overexpressing (OE) specific genes or a small RNA (GAUT4‐KD, miRNA156‐OE, MYB4‐OE, COMT‐KD and FPGS‐KD) was grown in the field and aerial tissue analysed for biofuel production traits. Clones representing independent transgenic lines were established and senesced tissue was sampled after year 1 and 2 growth cycles. Biomass was analysed for wall sugars, recalcitrance to enzymatic digestibility and biofuel production using separate hydrolysis and fermentation. No correlation was found between plant carbohydrate content and biofuel production pointing to overriding structural and compositional elements that influence recalcitrance. Biomass yields were greater for all lines in the second year as plants establish in the field and standard amounts of biomass analysed from each line had more glucan, xylan and less ethanol (g/g basis) in the second‐ versus the first‐year samples, pointing to a broad increase in tissue recalcitrance after regrowth from the perennial root. However, biomass from second‐year growth of transgenics targeted for wall modification, GAUT4‐KD, MYB4‐OE, COMT‐KD and FPGS‐KD, had increased carbohydrate and ethanol yields (up to 12% and 21%, respectively) compared with control samples. The parental plant lines were found to have a significant impact on recalcitrance which can be exploited in future strategies. This summarizes progress towards generating next‐generation bio‐feedstocks with improved properties for microbial and enzymatic deconstruction, while providing a comprehensive quantitative analysis for the bioconversion of multiple plant lines in five transgenic strategies.  相似文献   
106.
Our objective was to investigate how sepsis influences cellular dynamics and amyloid formation before and after plaque formation. As such, APP-mice were subjected to a polymicrobial abdominal infection resulting in sepsis at 2 (EarlySepsis) and 4 (LateSepsis) months of age. Behavior was tested before sepsis and at 5 months of age. We could not detect any short-term memory or exploration behavior alterations in APP-mice that were subjected to Early or LateSepsis. Immunohistochemical analysis revealed a lower area of NeuN+ and Iba1+ signal in the cortex of Late compared with EarlySepsis animals (p = 0.016 and p = 0.01), with an increased astrogliosis in LateSepsis animals compared with WT-Sepsis (p = 0.0028), EarlySepsis (p = 0.0032) and the APP-Sham animals (p = 0.048). LateSepsis animals had larger areas of amyloid compared with both EarlySepsis (p = 0.0018) and APP-Sham animals (p = 0.0024). Regardless of the analyzed markers, we were not able to detect any cellular difference at the hippocampal level between groups. We were able to detect an increased inflammatory response around hippocampal plaques in LateSepsis compared with APP-Sham animals (p = 0.0003) and a decrease of AQP4 signal far from Sma+ vessels. We were able to show experimentally that an acute sepsis event before the onset of plaque formation has a minimal effect; however, it could have a major impact after its onset.  相似文献   
107.
Pregnant women with epilepsy have to balance maternal and fetal risks associated with uncontrolled seizures against the potential teratogenic effects from antiepileptic drugs (AEDs). Carbamazepine (CBZ) is among the four most commonly used AEDs for treatment of pregnant epileptic women. We previously reported that new-born children had a decreased head circumference after in utero CBZ exposure. This study investigates how prenatal exposure of CBZ influences the number of neurons in new-born and young mouse hippocampus, amygdala and cortex cerebri. Clinical studies describe inconclusive results on if prenatal CBZ treatment influences cognition. Here we investigate this issue in mice using two well characterized cognitive tasks, the passive avoidance test and the Morris water maze test. Prenatal exposure of CBZ reduced the number of neurons (NeuN-immunoreactive cells) in the new-born mouse hippocampus with 50% compared to non-exposed mice. A reduction of neurons (20%) in hippocampus was still observed when the animals were 5 weeks old. These mice also displayed a 25% reduction of neurons in cortex cerebri. Prenatal CBZ treatment did not significantly impair learning and memory measured in the passive avoidance test and in the Morris water maze. However, these mice displayed a higher degree of thigmotaxic behaviour than the control mice. The body weight of prenatally CBZ exposed five-week old mice were lower compared to control mice not exposed to CBZ (p = 0.001). In conclusion, prenatal exposure to CBZ reduces the number of neurons dramatically in areas important for cognition such as hippocampus and cortex, without severe impairments on learning and memory. These results are in line with some clinical studies, reporting that CBZ has minor negative effects on cognition. The challenge for future studies are to segment out what possible effects a reduction of neurons could have on different types of cognition, like intellectual ability and social interaction.  相似文献   
108.
To study somatostatin/dopamine (SS/D) synergy in a human cell system constitutively expressing SS and D receptors (SSR and DR, respectively), we characterized the expression of SSR and DR subtypes in the non-small-cell lung cancer line Calu-6, and then we evaluated the effect on cell proliferation of SS/D chimeric molecules (BIM-23A387 and BIM-23A370), which bind with high affinity both sst(2) and D(2)R, and compared the results with those obtained by using SS-14 and subtype-selective SS analogs (SSA) and D agonists (DA). Because Calu-6 cells produce insulin-like growth factor (IGF) and IGF-binding protein (IGFBP) peptides, which play a role in the autocrine/paracrine control of cell growth, we also investigated the effects of chimeric compounds on secretion and expression of IGF system components. Relative high levels of sst(2) and the long isoform of the D(2)R were detected by real-time RT-PCR and Western blot in Calu-6, together with sst(5) and to a lesser extent sst(3) and D(4)R. BIM-23A387 and BIM-23A370 significantly inhibited growth of Calu-6, whereas IGF-IGFBP secretion or expression was unaffected, suggesting a direct inhibitory effect. The inhibition of cell growth, measured by both [(3)H]thymidine incorporation and cell count, was significantly lower when individual SSA and DA control peptides or subtype-specific SSA and DA were tested. BIM-23A370 was more potent than BIM-23A387 (P < 0.001). These findings show that SS/D chimeras can inhibit Calu-6 proliferation in an IGF-independent manner and suggest that this enhanced potency might be because of the induction of SSR/DR dimerization. The Calu-6 cell line, constitutively expressing SSR and DR, provides a suitable model to elucidate the mechanism of action of SSA and DA on regulation of cell growth and to characterize the interaction between SSR and DR.  相似文献   
109.
Batracian Rana esculenta erythrocytes cell death induced by either calcium influx, or staurosporine, involves typical apoptotic phenotype. Our data reveal: (i) a drastic modification of the cell morphology with loss of the ellipsoidal form as assessed by phase contrast microscopy and scanning electron microscopy; (ii) an exposure of the phosphatidylserine residues in the outer leaflet of the cell membrane; (iii) a caspase-3-like activity; (iv) a mitochondrial membrane potential (Delta Psi m) loss; and (v) a chromatin condensation and fragmentation. Erythrocyte chromatin condensation and fragmentation are prevented by caspase and calpain peptide inhibitors. These inhibitors also prevent Delta Psi m loss supporting the idea that mitochondria is a central sensor for Rana erythrocytes cell death. Our observations highlight the conservation of the programmed cell death machinery in erythrocytes across kingdom.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号