首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   249篇
  免费   29篇
  2023年   4篇
  2022年   6篇
  2021年   9篇
  2020年   8篇
  2019年   8篇
  2018年   15篇
  2017年   14篇
  2016年   13篇
  2015年   19篇
  2014年   21篇
  2013年   18篇
  2012年   18篇
  2011年   29篇
  2010年   13篇
  2009年   8篇
  2008年   16篇
  2007年   7篇
  2006年   10篇
  2005年   9篇
  2004年   6篇
  2003年   7篇
  2002年   4篇
  2001年   2篇
  1999年   1篇
  1998年   4篇
  1988年   1篇
  1979年   2篇
  1977年   1篇
  1975年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1964年   1篇
排序方式: 共有278条查询结果,搜索用时 15 毫秒
31.

Background

Reconstructing the genome of a species from short fragments is one of the oldest bioinformatics problems. Metagenomic assembly is a variant of the problem asking to reconstruct the circular genomes of all bacterial species present in a sequencing sample. This problem can be naturally formulated as finding a collection of circular walks of a directed graph G that together cover all nodes, or edges, of G.

Approach

We address this problem with the “safe and complete” framework of Tomescu and Medvedev (Research in computational Molecular biology—20th annual conference, RECOMB 9649:152–163, 2016). An algorithm is called safe if it returns only those walks (also called safe) that appear as subwalk in all metagenomic assembly solutions for G. A safe algorithm is called complete if it returns all safe walks of G.

Results

We give graph-theoretic characterizations of the safe walks of G, and a safe and complete algorithm finding all safe walks of G. In the node-covering case, our algorithm runs in time \(O(m^2 + n^3)\), and in the edge-covering case it runs in time \(O(m^2n)\); n and m denote the number of nodes and edges, respectively, of G. This algorithm constitutes the first theoretical tight upper bound on what can be safely assembled from metagenomic reads using this problem formulation.
  相似文献   
32.
33.
Preventing and eradicating biofilms remains a challenge in clinical and industrial settings. Recently, the present authors demonstrated that silver oxynitrate (Ag7NO11) prevented and eradicated single-species planktonic and biofilm populations of numerous microbes at lower concentrations than other silver (Ag) compounds. Here, the antimicrobial and anti-biofilm efficacy of Ag7NO11 is elaborated by testing its in vitro activity against combinations of dual-species, planktonic and biofilm populations of Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. As further evidence emerges that multispecies bacterial communities are more common in the environment than their single-species counterparts, this study reinforces the diverse applicability of the minimal biofilm eradication concentration (MBEC?) assay for testing antimicrobial compounds against biofilms. Furthermore, this study demonstrated that Ag7NO11 had enhanced antimicrobial and anti-biofilm activity compared to copper sulfate (CuSO4) and silver nitrate (AgNO3) against the tested bacterial species.  相似文献   
34.
A high percentage of critical patients are found to develop acute respiratory distress syndrome (ARDS). Several studies have reported high mortality rates in these cases which are most frequently associated with multiple organ dysfunctions syndrome. Lately, many efforts have been made to evaluate and monitor ARDS in critical patients. In this regard, the assessment of genetic polymorphisms responsible for developing ARDS present as a challenge and are considered future biomarkers. Early detection of the specific polymorphic gene responsible for ARDS in critically ill patients can prove to be a useful tool in the future, able to help decrease the mortality rates in these cases. Moreover, identifying the genetic polymorphism in these patients can help in the implementation of a personalized intensive therapy scheme for every type of patient, based on its genotype.  相似文献   
35.
There is increasing evidence that the circadian clock is a significant driver of photosynthesis that becomes apparent when environmental cues are experimentally held constant. We studied whether the composition of photosynthetic pigments is under circadian regulation, and whether pigment oscillations lead to rhythmic changes in photochemical efficiency. To address these questions, we maintained canopies of bean and cotton, after an entrainment phase, under constant (light or darkness) conditions for 30–48 h. Photosynthesis and quantum yield peaked at subjective noon, and non‐photochemical quenching peaked at night. These oscillations were not associated with parallel changes in carbohydrate content or xanthophyll cycle activity. We observed robust oscillations of Chl a/b during constant light in both species, and also under constant darkness in bean, peaking when it would have been night during the entrainment (subjective nights). These oscillations could be attributed to the synthesis and/or degradation of trimeric light‐harvesting complex II (reflected by the rhythmic changes in Chl a/b), with the antenna size minimal at night and maximal around subjective noon. Considering together the oscillations of pigments and photochemistry, the observed pattern of changes is counterintuitive if we assume that the plant strategy is to avoid photodamage, but consistent with a strategy where non‐stressed plants maximize photosynthesis.  相似文献   
36.
37.
Fifty members of a novel class of antimicrobial compounds, 2-(4-R-phenoxymethyl)benzoic acid thioureides, were synthesized and characterized with respect to their activities against three parasites of human relevance, namely the protozoa Giardia lamblia and Toxoplasma gondii, and the larval (metacestode) stage of the tapeworm Echinococcus multilocularis. To determine the selective toxicity of these compounds, the human colon cancer cell line Caco2 and primary cultures of human foreskin fibroblasts (HFF) were also investigated. The new thioureides were obtained in a three-step-reaction process and subsequently characterized by their physical constants (melting point, solubility). The chemical structures were elucidated by 1H NMR, 13C NMR, IR spectral methods and elemental analysis. The analyses confirmed the final and intermediate compound structures and the synthesis. The compounds were then tested on the parasites in vitro. All thioureides, except two compounds with a nitro group, were totally ineffective against Giardia lamblia. 23 compounds inhibited the proliferation of T. gondii, three of them with an IC50 of approximately 1 μM. The structural integrity of E. multilocularis metacestodes was affected by 22 compounds. In contrast, HFF were not susceptible to any of these thioureides, while Caco2 cells were affected by 17 compounds, two of them inhibiting proliferation with an IC50 in the micromolar range. Thioureides may thus present a promising class of anti-infective agents.  相似文献   
38.

Background  

Few studies address the issue of hybridization in a more than two-species context. The species-rich Quercus complex is one of the systems which can offer such an opportunity. To investigate the contemporary pattern of hybridization we sampled and genotyped 320 offspring from a natural mixed forest comprising four species of the European white oak complex: Quercus robur, Q. petraea, Q. pubescens, and Q. frainetto.  相似文献   
39.
40.
The objective of this study was to evaluate the human NCI-N87 cell line as a model for gastric permeability drug studies under pH conditions of the stomach. The optimal conditions that led NCI-N87 cells to form a typical differentiated gastric epithelial barrier were a seeding density of 2.5 × 105 cells/cm2 on porous inserts and growth in serum-complemented RPMI-1640 medium until 18–27 days post-confluency. The resulting cell monolayers showed moderately high transepithelial electrical resistance (TEER) values of about 500 Ω cm2, cells of polygonal morphology expressing E-cadherin and ZO-1 proteins at their contact surfaces, and production of mucus clusters. The monolayers withstood apical pH of 7.4 down to 3.0 with the basal pH fixed at 7.4. The apparent permeability coefficients (Papp) of model compounds were evaluated in the apical-to-basolateral and basolateral-to-apical directions under different pH gradients. The monolayers were impermeable to the integrity marker Lucifer Yellow (low Papp of 0.3–1.1 × 10−6 cm/s). The furosemide Papp (0.4–1.5 × 10−5 cm/s) were slightly dependent on pH but remained moderate. The caffeine Papp (4.2–5.0 × 10−5 cm/s) were higher and insensitive to pH changes. The NCI-N87 cell line provides a useful in vitro tool to assess gastric drug permeability and absorption under physiologic conditions prevailing in the human stomach.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号