首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   244篇
  免费   29篇
  2023年   4篇
  2022年   8篇
  2021年   9篇
  2020年   8篇
  2019年   8篇
  2018年   15篇
  2017年   14篇
  2016年   13篇
  2015年   19篇
  2014年   21篇
  2013年   18篇
  2012年   15篇
  2011年   28篇
  2010年   13篇
  2009年   8篇
  2008年   16篇
  2007年   7篇
  2006年   9篇
  2005年   9篇
  2004年   6篇
  2003年   7篇
  2002年   3篇
  2001年   2篇
  1999年   1篇
  1998年   3篇
  1988年   1篇
  1979年   2篇
  1977年   1篇
  1975年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1964年   1篇
排序方式: 共有273条查询结果,搜索用时 15 毫秒
261.
262.
263.
Background and Aims The evolution of complex rooting systems during the Devonian had significant impacts on global terrestrial ecosystems and the evolution of plant body plans. However, detailed understanding of the pathways of root evolution and the architecture of early rooting systems is currently lacking. We describe the architecture and resolve the structural homology of the rooting system of an Early Devonian basal lycophyte. Insights gained from these fossils are used to address lycophyte root evolution and homology.Methods Plant fossils are preserved as carbonaceous compressions at Cottonwood Canyon (Wyoming), in the Lochkovian–Pragian (∼411 Ma; Early Devonian) Beartooth Butte Formation. We analysed 177 rock specimens and documented morphology, cuticular anatomy and structural relationships, as well as stratigraphic position and taphonomic conditions.Key Results The rooting system of the Cottonwood Canyon lycophyte is composed of modified stems that bear fine, dichotomously branching lateral roots. These modified stems, referred to as root-bearing axes, are produced at branching points of the above-ground shoot system. Root-bearing axes preserved in growth position exhibit evidence of positive gravitropism, whereas the lateral roots extend horizontally. Consistent recurrence of these features in successive populations of the plant preserved in situ demonstrates that they represent constitutive structural traits and not opportunistic responses of a flexible developmental programme.Conclusions This is the oldest direct evidence for a rooting system preserved in growth position. These rooting systems, which can be traced to a parent plant, include some of the earliest roots known to date and demonstrate that substantial plant–substrate interactions were under way by Early Devonian time. The morphological relationships between stems, root-bearing axes and roots corroborate evidence that positive gravitropism and root identity were evolutionarily uncoupled in lycophytes, and challenge the hypothesis that roots evolved from branches of the above-ground axial system, suggesting instead that lycophyte roots arose as a novel organ.  相似文献   
264.
  1. The Cormack–Jolly–Seber (CJS) model and its extensions have been widely applied to the study of animal survival rates in open populations. The model assumes that individuals within the population of interest have independent fates. It is, however, highly unlikely that a pair of animals which have formed a long‐term pairing have dissociated fates.
  2. We examine a model extension which allows animals who have formed a pair‐bond to have correlated survival and recapture fates. Using the proposed extension to generate data, we conduct a simulation study exploring the impact that correlated fate data has on inference from the CJS model. We compute Monte Carlo estimates for the bias, range, and standard errors of the parameters of the CJS model for data with varying degrees of survival correlation between mates. Furthermore, we study the likelihood ratio test of sex effects within the CJS model by simulating densities of the deviance. Finally, we estimate the variance inflation factor c^ for CJS models that incorporate sex‐specific heterogeneity.
  3. Our study shows that correlated fates between mated animals may result in underestimated standard errors for parsimonious models, significantly deflated likelihood ratio test statistics, and underestimated values of c^ for models taking sex‐specific effects into account.
  4. Underestimated standard errors can result in lowered coverage of confidence intervals. Moreover, deflated test statistics will provide overly conservative test results. Finally, underestimated variance inflation factors can lead researchers to make incorrect conclusions about the level of extra‐binomial variation present in their data.
  相似文献   
265.
266.
267.
The stele concept is one of the oldest enduring concepts in plant biology. Here, I review the history of the concept and build an argument for an updated view of steles and their evolution. Studies of stelar organization have generated a widely ranging array of definitions that determine the way we classify steles and construct scenarios about the evolution of stelar architecture. Because at the organismal level biological evolution proceeds by changes in development, concepts of structure need to be grounded in development to be relevant in an evolutionary perspective. For the stele, most traditional definitions that incorporate development have viewed it as the totality of tissues that either originate from procambium – currently the prevailing view – or are bordered by a boundary layer (e.g. endodermis). Consensus between these two perspectives can be reached by recasting the stele as a structural entity of dual nature. Following a brief review of the history of the stele concept, basic terminology related to stelar organization, and traditional classifications of the steles, I revisit boundary layers from the perspective of histogenesis as a dynamic mosaic of developmental domains. I review anatomical and molecular data to explore and reaffirm the importance of boundary layers for stelar organization. Drawing on information from comparative anatomy, developmental regulation, and the fossil record, I propose a stele concept that integrates both the boundary layer and the procambial perspectives, consistent with a dual nature of the stele. This dual stele model posits that stelar architecture is determined at the apical meristem by two major cell fate specification events: a first one that specifies a provascular domain and its boundaries, and a second event that specifies a procambial domain (which will mature into conducting tissues) from cell subpopulations of the provascular domain. If the position and extent of the developmental domains defined by the two events are determined by different concentrations of the same morphogen (most likely auxin), then the distribution of this organizer factor in the shoot apical meristem, as modulated by changes in axis size and the effect of lateral organs, can explain the different stelar configurations documented among tracheophytes. This model provides working hypotheses that incorporate assumptions and generate implications that can be tested empirically. The model also offers criteria for an updated classification of steles in line with current understanding of plant development. In this classification, steles fall into two major categories determined by the configuration of boundary layers: boundary protosteles and boundary siphonosteles, each with subtypes defined by the architecture of the vascular tissues. Validation of the dual stele model and, more generally, in-depth understanding of the regulation of stelar architecture, will necessitate targeted efforts in two areas: (i) the regulation of procambium, vascular tissue, and boundary layer specification in all extant vascular plants, considering that most of the diversity in stelar architecture is hosted by seed-free plants, which are the least explored in terms of developmental regulation; (ii) the configuration of vascular tissues and, especially, boundary layers, in as many extinct lineages as possible.  相似文献   
268.
269.
A newly effective system was used to bleach ligno-cellulosic textile materials. This system is based on two different newly synthesized natrium oxo-diperoxo molybdates, Na2[MoO (O2)2(C2O4)] and Na2[MoO (O2)2(C6H6O7)].  相似文献   
270.
For cross-linked amylose (CLA) tablets prepared by direct compression, a linear increase in cross-linking degree (cld) defined as percentage of epichlorohydrin cross-linker/polymer, generates non-monotonous variation of drug release time. Controlled release (up to 20–24 h) properties were obtained only for tablets from CLA (ContramidTM) with relatively low cld (CLA-2 up to CLA-6). Moderate increase in cld (CLA-15) generates a sharp decrease in the release time (2–6 h). This is a particular characteristic of the CLA matrix. The controlled release properties were related to the X-ray pattern of the dry CLA network. The increase in cld induces a transition from B-type (double helix) to a predominat V-type (single helix) and to more amorphous conformation of CLA powders. Furthermore, FT-IR data indicated low free water content at low cld. For low cross-linked CLA, chains are closely located and stabilized by HO groups involved in hydrogen bonding and thus more resistant to hydration and more appropriate for the control of drug release.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号