首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   448篇
  免费   43篇
  2023年   5篇
  2022年   12篇
  2021年   13篇
  2020年   11篇
  2019年   10篇
  2018年   18篇
  2017年   17篇
  2016年   17篇
  2015年   27篇
  2014年   33篇
  2013年   34篇
  2012年   33篇
  2011年   48篇
  2010年   22篇
  2009年   20篇
  2008年   28篇
  2007年   21篇
  2006年   24篇
  2005年   16篇
  2004年   18篇
  2003年   12篇
  2002年   9篇
  2001年   6篇
  2000年   4篇
  1999年   2篇
  1998年   5篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1984年   2篇
  1983年   2篇
  1979年   2篇
  1977年   1篇
  1975年   1篇
  1972年   2篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1964年   1篇
  1958年   1篇
  1950年   1篇
排序方式: 共有491条查询结果,搜索用时 15 毫秒
61.
A critical requirement for cell survival after trauma is sealing of breaks in the cell membrane [M. Bier, S.M. Hammer, D.J. Canaday, R.C Lee, Kinetics of sealing for transient electropores in isolated mammalian skeletal muscle cells, Bioelectromagnetics 20 (1999) 194-201; R.C. Lee, D.C. Gaylor, D. Bhatt, D.A. Israel, Role of cell membrane rupture in the pathogenesis of electrical trauma, J. Surg. Res. 44 (1988) 709-719; R.C. Lee, J.F. Burke, E.G. Cravalho (Eds.), Electrical Trauma: The Pathophysiology, Manifestations, and Clinical Management, Cambridge University Press, 1992; B.I. Tropea, R.C. Lee, Thermal injury kinetics in electrical trauma, J. Biomech. Engr. 114 (1992) 241-250; F. Despa, D.P. Orgill, J. Newalder, R.C Lee, The relative thermal stability of tissue macromolecules and cellular structure in burn injury, Burns 31 (2005) 568-577; T.A. Block, J.N. Aarsvold, K.L. Matthews II, R.A. Mintzer, L.P. River, M. Capelli-Schellpfeffer, R.L. Wollman, S. Tripathi, C.T. Chen, R.C. Lee, The 1995 Lindberg Award. Nonthermally mediated muscle injury and necrosis in electrical trauma, J. Burn Care and Rehabil. 16 (1995) 581-588; K. Miyake, P.L. McNeil, Mechanical injury and repair of cells, Crit. Care Med. 31 (2003) S496-S501; R.C. Lee, L.P. River, F.S. Pan, R.L. Wollmann, Surfactant-induced sealing of electropermeabilized skeletal muscle membranes in vivo, Proc. Natl. Acad. Sci. 89 (1992) 4524-4528; J.D. Marks, C.Y. Pan, T. Bushell, W. Cromie, R.C. Lee, Amphiphilic, tri-block copolymers provide potent membrane-targeted neuroprotection, FASEB J. 15 (2001) 1107-1109; B. Greenebaum, K. Blossfield, J. Hannig, C.S. Carrillo, M.A. Beckett, R.R. Weichselbaum, R.C. Lee, Poloxamer 188 prevents acute necrosis of adult skeletal muscle cells following high-dose irradiation, Burns 30 (2004) 539-547; G. Serbest, J. Horwitz, K. Barbee, The effect of poloxamer-188 on neuronal cell recovery from mechanical injury, J. Neurotrauma 22 (2005) 119-132]. The triblock copolymer surfactant Poloxamer 188 (P188) is known to increase the cell survival after membrane electroporation [R.C. Lee, L.P. River, F.S. Pan, R.L. Wollmann, Surfactant-induced sealing of electropermeabilized skeletal muscle membranes in vivo, Proc. Natl. Acad. Sci. 89 (1992) 4524-4528; Z. Ababneh, H. Beloeil, C.B. Berde, G. Gambarota, S.E. Maier, R.V. Mulkern, Biexponential parametrization of T2 and diffusion decay curves in a rat muscle edema model: Decay curve components and water compartments, Magn. Reson. Med. 54 (2005) 524-531]. Here, we use a rat hind-limb model of electroporation injury to determine if the intravenous administration of P188 improves the recovery of the muscle function. Rat hind-limbs received a sequence of either 0, 3, 6, 9, or 12 electrical current pulses (2 A, 4 ms duration, 10 s duty cycle). Magnetic resonance imaging (MRI) analysis, muscle water content and compound muscle action potential (CMAP) amplitudes were compared. Electroporation injury manifested edema formation and depression of the CMAP amplitudes. P188 (one bolus of 1 mg/ml of blood) was administrated 30 or 60 min after injury. Animals receiving P188 exhibited reduced tissue edema (p<0.05) and increased CMAP amplitudes (p<0.03). By comparison, treatment with 10 kDa neutral dextran, which produces similar serum osmotic effects as P188, had no effect on post-electroporation recovery. Noteworthy, the present results suggest that a single intravenous dose of P188 is effective to restore the structural integrity of damaged tissues with intact circulation.  相似文献   
62.
When water-coated hydrophobic surfaces meet, direct contacts form between the surfaces, driving water out. However, long-range attractive forces first bring those surfaces close. This analysis reveals the source and strength of the long-range attraction between water-coated hydrophobic surfaces. The origin is in the polarization field produced by the strong correlation and coupling of the dipoles of the water molecules at the surfaces. We show that this polarization field gives rise to dipoles on the surface of the hydrophobic solutes that generate long-range hydrophobic attractions. Thus, hydrophobic aggregation begins with a step in which water-coated nonpolar solutes approach one another due to long-range electrostatic forces. This precursor regime occurs before the entropy increase of releasing the water layers and the short-range van der Waals attraction provide the driving force to "dry out" the contact surface. The effective force of attraction is derived from basic molecular principles, without assumptions of the structure of the hydrophobe-water interaction. The strength of this force can be measured directly from atomic force microscopy images of a hydrophobic molecule tethered to a surface but extending into water, and another hydrophobe attached to an atomic force probe. The phenomenon can be observed in the transverse relaxation rates in water proton magnetic resonance as well. The results shed light on the way water mediates chemical and biological self-assembly, a long outstanding problem.  相似文献   
63.
Preventing and eradicating biofilms remains a challenge in clinical and industrial settings. Recently, the present authors demonstrated that silver oxynitrate (Ag7NO11) prevented and eradicated single-species planktonic and biofilm populations of numerous microbes at lower concentrations than other silver (Ag) compounds. Here, the antimicrobial and anti-biofilm efficacy of Ag7NO11 is elaborated by testing its in vitro activity against combinations of dual-species, planktonic and biofilm populations of Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. As further evidence emerges that multispecies bacterial communities are more common in the environment than their single-species counterparts, this study reinforces the diverse applicability of the minimal biofilm eradication concentration (MBEC?) assay for testing antimicrobial compounds against biofilms. Furthermore, this study demonstrated that Ag7NO11 had enhanced antimicrobial and anti-biofilm activity compared to copper sulfate (CuSO4) and silver nitrate (AgNO3) against the tested bacterial species.  相似文献   
64.
A high percentage of critical patients are found to develop acute respiratory distress syndrome (ARDS). Several studies have reported high mortality rates in these cases which are most frequently associated with multiple organ dysfunctions syndrome. Lately, many efforts have been made to evaluate and monitor ARDS in critical patients. In this regard, the assessment of genetic polymorphisms responsible for developing ARDS present as a challenge and are considered future biomarkers. Early detection of the specific polymorphic gene responsible for ARDS in critically ill patients can prove to be a useful tool in the future, able to help decrease the mortality rates in these cases. Moreover, identifying the genetic polymorphism in these patients can help in the implementation of a personalized intensive therapy scheme for every type of patient, based on its genotype.  相似文献   
65.
There is increasing evidence that the circadian clock is a significant driver of photosynthesis that becomes apparent when environmental cues are experimentally held constant. We studied whether the composition of photosynthetic pigments is under circadian regulation, and whether pigment oscillations lead to rhythmic changes in photochemical efficiency. To address these questions, we maintained canopies of bean and cotton, after an entrainment phase, under constant (light or darkness) conditions for 30–48 h. Photosynthesis and quantum yield peaked at subjective noon, and non‐photochemical quenching peaked at night. These oscillations were not associated with parallel changes in carbohydrate content or xanthophyll cycle activity. We observed robust oscillations of Chl a/b during constant light in both species, and also under constant darkness in bean, peaking when it would have been night during the entrainment (subjective nights). These oscillations could be attributed to the synthesis and/or degradation of trimeric light‐harvesting complex II (reflected by the rhythmic changes in Chl a/b), with the antenna size minimal at night and maximal around subjective noon. Considering together the oscillations of pigments and photochemistry, the observed pattern of changes is counterintuitive if we assume that the plant strategy is to avoid photodamage, but consistent with a strategy where non‐stressed plants maximize photosynthesis.  相似文献   
66.
67.
The rapid development of genomics and proteomics requires accelerated improvement of the microarrays density, multiplexing, readout capabilities and cost-effectiveness. The bead arrays are increasingly attractive because of their self-assembly-based fabrication, which alleviates many problems of top-down microfabrication. Here we present a simple, reliable, robust and modular technique for the fabrication of bead microarrays, which combines the directed assembling of beads in microstructures and PDMS-based replica molding. The beads are first self-assembled in pyramidal microwells fabricated by anisotropic etching of silicon substrates, then transferred on the apex of PDMS pyramids that replicate the silicon microstructures. The arrays are chemically and biochemically robust; they are spatially addressable and have the potential for being informationally addressable; and they appear to offer better readout capabilities than the classical microarrays.  相似文献   
68.
This paper analyses the conservation gains through High Conservation Value Forest (HCVF) assessments in two South-East European countries (Bosnia-Herzegovina and Romania). These are based on the review of the Draft Forest Stewardship Council (FSC) National Standards and HCVF Manuals and the results of the certification process of seven forest management units in the two countries. The review indicates that the application of Principle 9 (High Conservation Value Forests) and Criterion 6.4 of the FSC in Bosnia-Herzegovina and Romania was influenced by the size and nature of tenure (i.e., public or non-public land), rather than geographic location per se. The study also revealed that the assessment of HCVF has, for the first time, raised the question of conservation of cultural, historical and religious values as well as the sustainable management of those forests relevant for the basic needs of communities. These are values not currently covered at the present by the national conservation legislation in either of these two countries. Findings of this study in both countries demonstrates that there are certain conservation gains as a result of the HCVF assessment, especially related to ecosystem services, prevention of soil erosion and conservation of threatened, endangered and endemic species.  相似文献   
69.
Most research on growing bacterial colonies on agar plates has concerned the effect of genetic or morphotype variation. Some studies have indicated that there is a correlation between microscopic bacterial motion and macroscopic colonial expansion, especially for swarming strains, but no measurements have been obtained for a single strain to relate the microscopic scale to the macroscopic scale. We examined here a single strain (Paenibacillus dendritiformis type T; tip splitting) to determine both the macroscopic growth of colonies and the microscopic bacterial motion within the colonies. Our multiscale measurements for a variety of growth conditions revealed that motion on the microscopic scale and colonial growth are largely independent. Instead, the growth of the colony is strongly affected by the availability of a surfactant that reduces surface tension.Bacteria are able to colonize many different surfaces through collective behavior such as swarming and biofilm formation. Studies of such behavior (10, 18, 26, 31) have revealed cooperative phenomena on both microscopic and colonial scales (4, 5, 7, 8, 20), including production of extracellular “lubricant-wetting” fluid for movement on medium and hard surfaces (19, 22, 25), chemical signaling such as quorum sensing and chemotactic signaling (1, 12, 27), and the secretion of inhibiting and killing factors (2, 9, 11, 14, 15, 17).Research has suggested possible links between the microscopic behavior of a colony and the rate at which the colony expands (12, 23, 24, 29). For Pseudomonas aeruginosa, increased reversal rates for flagella lead to hyperswarming (a larger colony) (26). Similar flagellar modulation affects Escherichia coli (32); if the bacteria never tumble (flagella rotate only counterclockwise) or only tumble (flagella rotate only clockwise), the final colony is much smaller than a colony formed when the bacteria both swim and tumble. For Rhizobium etli, a correlation has been observed between microscopic swarming motion and expansion of the colony, and an acylhomoserine lactone molecule has been found to be a swarming regulator, as well as a biosurfactant that controls surface activity (12). These studies suggest that there is a correlation between microscopic activity and colonial expansion; however, a mutation may be pleiotropic, affecting both motility and surfactant production. Further, there may be additional, unidentified differences between mutant and wild-type strains. For example, the failure of Bacillus subtilis laboratory strains to swarm is caused by a mutation in a gene (sfp) needed for surfactin synthesis and a mutation(s) in an additional unknown gene(s) (21). Experiments that avoid this ambiguity by studying the response of a single strain exposed to changing physical environments have not been performed. Further, except for measurements of the size of an expanding colony as a function of time (3, 6), no detailed time development studies of a growing bacterial colony have been reported.Here we exposed a single bacterial strain, Paenibacillus dendritiformis type T (tip splitting) (4), to different substrate hardnesses, nutrition levels, and surfactant concentrations to identify the parameters that determine colonial growth. P. dendritiformis is a gram-positive rod-shaped (4 μm by 1 μm) bacterium that swims on top of an agar gel in a thin layer (a few micrometers thick) of fluid, presumably secreted by the bacterial cells. The bacteria develop complex colonial (bush-like) branching patterns that are sensitive to small changes in the environment when the bacteria are grown on nutrient-limited surfaces (low peptone levels [approximately 1 g/liter]) (6). The colonies grow slowly (0.1 mm/h) so the microscopic motion can be followed with a microscope for about 10 min without moving the field of view. Also, this strain shows swarming-like microscopic motion where the bacteria move collectively in whirls and jets. This makes this bacterium well suited for studying simultaneously the development of a colony and the internal structure of branches. We constructed a novel setup to observe 10 growing P. dendritiformis colonies in each experiment, and complementary microscopic measurements were obtained for the velocity field of individual bacteria or small groups of cells within the colonies. Specifically, we measured the “bacterial speed,” which was the average of the values for the velocity vectors for the bacteria in a region near the edge of a growing colony, and the “tip velocity,” which was the speed of the moving growth front at the edge of a colony. We also quantified the collective bacterial motion within the colonies by computing spatial and temporal velocity autocorrelation functions.  相似文献   
70.
Fifty members of a novel class of antimicrobial compounds, 2-(4-R-phenoxymethyl)benzoic acid thioureides, were synthesized and characterized with respect to their activities against three parasites of human relevance, namely the protozoa Giardia lamblia and Toxoplasma gondii, and the larval (metacestode) stage of the tapeworm Echinococcus multilocularis. To determine the selective toxicity of these compounds, the human colon cancer cell line Caco2 and primary cultures of human foreskin fibroblasts (HFF) were also investigated. The new thioureides were obtained in a three-step-reaction process and subsequently characterized by their physical constants (melting point, solubility). The chemical structures were elucidated by 1H NMR, 13C NMR, IR spectral methods and elemental analysis. The analyses confirmed the final and intermediate compound structures and the synthesis. The compounds were then tested on the parasites in vitro. All thioureides, except two compounds with a nitro group, were totally ineffective against Giardia lamblia. 23 compounds inhibited the proliferation of T. gondii, three of them with an IC50 of approximately 1 μM. The structural integrity of E. multilocularis metacestodes was affected by 22 compounds. In contrast, HFF were not susceptible to any of these thioureides, while Caco2 cells were affected by 17 compounds, two of them inhibiting proliferation with an IC50 in the micromolar range. Thioureides may thus present a promising class of anti-infective agents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号