首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   532篇
  免费   21篇
  2024年   1篇
  2023年   3篇
  2022年   7篇
  2021年   15篇
  2020年   9篇
  2019年   12篇
  2018年   8篇
  2017年   7篇
  2016年   8篇
  2015年   17篇
  2014年   23篇
  2013年   36篇
  2012年   44篇
  2011年   59篇
  2010年   35篇
  2009年   22篇
  2008年   39篇
  2007年   40篇
  2006年   24篇
  2005年   21篇
  2004年   19篇
  2003年   18篇
  2002年   17篇
  2001年   6篇
  2000年   4篇
  1999年   6篇
  1998年   4篇
  1997年   5篇
  1996年   1篇
  1995年   4篇
  1994年   1篇
  1992年   1篇
  1990年   6篇
  1989年   3篇
  1987年   3篇
  1986年   3篇
  1985年   2篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   4篇
  1978年   10篇
排序方式: 共有553条查询结果,搜索用时 31 毫秒
11.
Fossil pollen believed to be related to extant Hagenia abyssinica were discovered in the early Miocene (21.73 Ma) Mush Valley paleoflora, Ethiopia, Africa. Both the fossil and extant pollen grains of H. abyssinica were examined with combined light microscopy, scanning electron microscopy, and transmission electron microscopy to compare the pollen and establish their relationships. Based on this, the fossil pollen grains were attributed to Hagenia. The presence of Hagenia in the fossil assemblage raises the questions if its habitat has changed over time, and if the plants are/were wind pollinated. To shed light on these questions, the morphology of extant anthers was also studied, revealing specialized hairs inside the anthers, believed to aid in insect pollination. Pollen and anther morphology are discussed in relation to the age and origin of the genus within a molecular dated phylogenetic framework, the establishment of complex topography in East Africa, other evidence regarding pollination modes, and the palynological record. The evidence presented herein, and compiled from the literature, suggests that Hagenia was an insect‐pollinated lowland rainforest element during the early Miocene of the Mush Valley. The current Afromontane habitat and ambophilous (insect and wind) pollination must have evolved in post‐mid‐Miocene times.  相似文献   
12.
Intestinal ischemia/reperfusion (I/R) produces reactive oxygen species (ROS) activating signal transduction and apoptosis. The aim of this study was to evaluate the effect of (?)-epigallocatechin-3-gallate (EGCG) administration in inhibition of apoptosis by attenuating the expression of NF-kB, c-Jun and caspace-3 in intestinal I/R. Thirty male wistar rats were used. Group A sham operation, B I/R, C I/R-EGCG 50 mg/kg ip. Intestinal ischemia was induced for 60 min by clamping the superior mesenteric artery. Malondialdehyde (MDA), myeloperoxidase (MPO), light histology, Fragment End Labelling of DNA (TUNEL), immunocytochemistry for NF-kB, c-Jun and caspace-3 analysis in intestinal specimens were performed 120 min after reperfusion. Apoptosis as indicated by TUNEL and Caspace-3, NF-kB and c-Jun was widely expressed in I/R group but only slightly expressed in EGCG treated groups. MDA and MPO showed a marked increase in the I/R group and a significant decrease in the EGCG treated group. Light histology showed preservation of architecture in the EGCG treated group. In conclusion, EGCG pre-treatment is likely to inhibit intestinal I/R-induced apoptosis by down-regulating the expression of NF-kB, c-Jun and caspase-3.  相似文献   
13.
The third Heidelberg Unseminars in Bioinformatics (HUB) was held on 18th October 2012, at Heidelberg University, Germany. HUB brought together around 40 bioinformaticians from academia and industry to discuss the ‘Biggest Challenges in Bioinformatics’ in a ‘World Café’ style event.  相似文献   
14.
Highlights? TBLR1 controls cAMP-dependent lipolysis in adipocytes ? Adipocyte-specific deletion of TBLR1 in mice impairs fasting-induced lipolysis ? Lack of TBLR1 in adipocytes aggravates diet-induced obesity and metabolic dysfunction ? TBLR1 mRNA levels in WAT are elevated under lipolytic conditions in mice and humans  相似文献   
15.

Background

Despite higher levels of obesity, West African migrant women appear to have lower rates of type 2 diabetes than their male counterparts. We investigated the role of body fat distribution in these differences.

Methods

Cross-sectional study of Ghanaian migrants (97 men, 115 women) aged 18–60 years in Amsterdam, the Netherlands. Weight, height, waist and hip circumferences were measured. Logistic regression was used to explore the association of BMI, waist and hip measurements with elevated fasting glucose (glucose≥5.6 mmol/L). Linear regression was used to study the association of the same parameters with fasting glucose.

Results

Mean BMI, waist and hip circumferences were higher in women than men while the prevalence of elevated fasting glucose was higher in men than in women, 33% versus 19%. With adjustment for age only, men were non-significantly more likely than women to have an elevated fasting glucose, odds ratio (OR) 1.81, 95% CI: 0.95, 3.46. With correction for BMI, the higher odds among men increased and were statistically significant (OR 2.84, 95% CI: 1.32, 6.10), but with consideration of body fat distribution (by adding both hip and waist in the analysis) differences were no longer significant (OR 1.56 95% CI: 0.66, 3.68). Analysis with fasting glucose as continuous outcome measure showed somewhat similar results.

Conclusion

Compared to men, the lower rates of elevated fasting glucose observed among Ghanaian women may be partly due to a more favorable body fat distribution, characterized by both hip and waist measurements.  相似文献   
16.
Reactive oxygen species are generated by redox reactions and the Fenton reaction of H2O2 and iron that generates the hydroxyl radical that causes severe DNA, protein, and lipid damage. We screened Escherichia coli genomic libraries to identify a fragment, containing cueR, ybbJ, qmcA, ybbL, and ybbM, which enhanced resistance to H2O2 stress. We report that the ΔybbL and ΔybbM strains are more susceptible to H2O2 stress than the parent strain and that ybbL and ybbM overexpression overcomes H2O2 sensitivity. The ybbL and ybbM genes are predicted to code for an ATP-binding cassette metal transporter, and we demonstrate that YbbM is a membrane protein. We investigated various metals to identify iron as the likely substrate of this transporter. We propose the gene names fetA and fetB (for Fe transport) and the gene product names FetA and FetB. FetAB allows for increased resistance to oxidative stress in the presence of iron, revealing a role in iron homeostasis. We show that iron overload coupled with H2O2 stress is abrogated by fetA and fetB overexpression in the parent strain and in the Δfur strain, where iron uptake is deregulated. Furthermore, we utilized whole-cell electron paramagnetic resonance to show that intracellular iron levels in the Δfur strain are decreased by 37% by fetA and fetB overexpression. Combined, these findings show that fetA and fetB encode an iron exporter that has a role in enhancing resistance to H2O2-mediated oxidative stress and can minimize oxidative stress under conditions of iron overload and suggest that FetAB facilitates iron homeostasis to decrease oxidative stress.  相似文献   
17.
Secoisolariciresinol diglucosides (SDGs) (S,S)-SDG-1 (major isomer in flaxseed) and (R,R)-SDG-2 (minor isomer in flaxseed) were synthesized from vanillin via secoisolariciresinol (6) and glucosyl donor 7 through a concise route that involved chromatographic separation of diastereomeric diglucoside derivatives (S,S)-8 and (R,R)-9. Synthetic (S,S)-SDG-1 and (R,R)-SDG-2 exhibited potent antioxidant properties (EC50 = 292.17 ± 27.71 μM and 331.94 ± 21.21 μM, respectively), which compared well with that of natural (S,S)-SDG-1 (EC50 = 275.24 ± 13.15 μM). These values are significantly lower than those of ascorbic acid (EC50 = 1129.32 ± 88.79 μM) and α-tocopherol (EC50 = 944.62 ± 148.00 μM). Compounds (S,S)-SDG-1 and (R,R)-SDG-2 also demonstrated powerful scavenging activities against hydroxyl [natural (S,S)-SDG-1: 3.68 ± 0.27; synthetic (S,S)-SDG-1: 2.09 ± 0.16; synthetic (R,R)-SDG-2: 1.96 ± 0.27], peroxyl [natural (S,S)-SDG-1: 2.55 ± 0.11; synthetic (S,S)-SDG-1: 2.20 ± 0.10; synthetic (R,R)-SDG-2: 3.03 ± 0.04] and DPPH [natural (S,S)-SDG-1: EC50 = 83.94 ± 2.80 μM; synthetic (S,S)-SDG-1: EC50 = 157.54 ± 21.30 μM; synthetic (R,R)-SDG-2: EC50 = 123.63 ± 8.67 μM] radicals. These results confirm previous studies with naturally occurring (S,S)-SDG-1 and establish both (S,S)-SDG-1 and (R,R)-SDG-2 as potent antioxidants and free radical scavengers for potential in vivo use.  相似文献   
18.
There are two schools of thought regarding the cyclooxygenase (COX) isoform active in the vasculature. Using urinary prostacyclin markers some groups have proposed that vascular COX-2 drives prostacyclin release. In contrast, we and others have found that COX-1, not COX-2, is responsible for vascular prostacyclin production. Our experiments have relied on immunoassays to detect the prostacyclin breakdown product, 6-keto-PGF and antibodies to detect COX-2 protein. Whilst these are standard approaches, used by many laboratories, antibody-based techniques are inherently indirect and have been criticized as limiting the conclusions that can be drawn. To address this question, we measured production of prostanoids, including 6-keto-PGF, by isolated vessels and in the circulation in vivo using liquid chromatography tandem mass spectrometry and found values essentially identical to those obtained by immunoassay. In addition, we determined expression from the Cox2 gene using a knockin reporter mouse in which luciferase activity reflects Cox2 gene expression. Using this we confirm the aorta to be essentially devoid of Cox2 driven expression. In contrast, thymus, renal medulla, and regions of the brain and gut expressed substantial levels of luciferase activity, which correlated well with COX-2-dependent prostanoid production. These data are consistent with the conclusion that COX-1 drives vascular prostacyclin release and puts the sparse expression of Cox2 in the vasculature in the context of the rest of the body. In doing so, we have identified the thymus, gut, brain and other tissues as target organs for consideration in developing a new understanding of how COX-2 protects the cardiovascular system.  相似文献   
19.
Monoacylglycerol lipase (MGL) inhibition provides a potential treatment approach to glaucoma through the regulation of ocular 2-arachidonoylglycerol (2-AG) levels and the activation of CB1 receptors. Herein, we report the discovery of new series of carbamates as highly potent and selective MGL inhibitors. The new inhibitors showed potent nanomolar inhibitory activity against recombinant human and purified rat MGL, were selective (>1000-fold) against serine hydrolases FAAH and ABHD6 and lacked any affinity for the cannabinoid receptors CB1 and CB2. Protein-based 1H NMR experiments indicated that inhibitor 2 rapidly formed a covalent adduct with MGL with a residence time of about 6?h. This interconversion process “intrinsic reversibility” was exploited by modifications of the ligand’s size (length and bulkiness) to generate analogs with “tunable’ adduct residence time (τ). Inhibitor 2 was evaluated in a normotensive murine model for assessing intraocular pressure (IOP), which could lead to glaucoma, a major cause of blindness. Inhibitor 2 was found to decrease ocular pressure by ~4.5?mmHg in a sustained manner for at least 12?h after a single ocular application, underscoring the potential for topically-administered MGL inhibitors as a novel therapeutic target for the treatment of glaucoma.  相似文献   
20.
Aiming at contributing to the development of potential atheroprotective agents, we report on the concept and design of two peptide models, which mimic the amphipathic helices of apoA-I and incorporate Met into their sequences to validate its role as oxidant scavenger: Ac-ESK(Palm)KELSKSW(10)SEM(13)LKEK(Palm)SKS-NH(2) (model 1 [W(10), M(13)]) and Ac-ESK(Palm)KELSKSM(10)SEW(13)LKEK(Palm)SKS-NH(2) (model 2 [M(10), W(13)]). Hydrophobic residues of both models cover about the half of the surface, while the positively and negatively charged residues constitute two separate clusters on the hydrophilic face. Palmitoyl groups were introduced into the Lys-N(epsilon)H(2) groups at positions 3 and 17 to contribute to the amphipathic character of the peptides and stabilize the nonpolar face of the helix. Conformational study by the combined application of 2D-NMR and molecular dynamics simulations, CD, FTIR, and fluorescence spectroscopy revealed that model 1 adopts helical conformation and Met is well exposed to the microenvironment. Model 2 that derives from model 1 by exchanging W(10) (model 1) with M(10) and M(13) (model 1) with W(13) also displays helical characteristics, while Met is rather shielded. Oxidation experiments indicated that model 1 exhibits a 2-fold more potent antioxidant activity towards LDL oxidation, compared to model 2, confirming the role of Met, when is devoid of steric hindrances, as oxidant scavenger for the protection of LDL.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号