首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   441篇
  免费   18篇
  2024年   1篇
  2023年   3篇
  2022年   7篇
  2021年   15篇
  2020年   8篇
  2019年   12篇
  2018年   8篇
  2017年   7篇
  2016年   8篇
  2015年   16篇
  2014年   20篇
  2013年   25篇
  2012年   37篇
  2011年   51篇
  2010年   30篇
  2009年   17篇
  2008年   34篇
  2007年   34篇
  2006年   20篇
  2005年   22篇
  2004年   18篇
  2003年   15篇
  2002年   14篇
  2001年   8篇
  2000年   3篇
  1999年   5篇
  1998年   3篇
  1997年   5篇
  1996年   1篇
  1995年   2篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1986年   1篇
  1985年   1篇
排序方式: 共有459条查询结果,搜索用时 15 毫秒
391.
Several chiral, analogues of the endogenous cannabinoid receptor ligand, arachidonylethanolamide (anandamide), methylated at the 2,1' and 2' positions using asymmetric synthesis were evaluated in order to study (a) stereoselectivity of binding to CB1 and CB2 cannabinoid receptors; and (b) metabolic stability with regard to anandamide amidase. Enantiomerically pure 2-methyl arachidonic acids were synthesized through diastereoselective methylation of the respective chiral 2-oxazolidinone enolate derivatives and CB1 and CB2 receptor affinities of the resulting chiral anandamides were evaluated using a standard receptor binding assay. Introduction of a single 2-methyl group increased affinity for CB1, led to limited enantioselectivity and only modestly improved metabolic stability. However, a high degree of enantio- and diastereoselectivity was observed for the 2,1'-dimethyl analogues. (R)-N-(1-methyl-2-hydroxyethyl)-2-(R)-methyl-arachidonamide (4) exhibited the highest CB1 receptor affinity in this series with a K(i) of 7.42 nM, an at least 10-fold improvement on anandamide (K(i)=78.2 nM). The introduction of two methyl groups at the 2-position of anandamide led to no change in affinity for CB1 but somewhat enhanced metabolic stability. Conversely, chiral headgroup methylation in the 2-gem-dimethyl series led to chiral analogues possessing a wide range of CB1 affinities. Of these the (S)-2,2,2'-trimethyl analogue (12) had the highest affinity for CB1 almost equal to that of anandamide. In agreement with our previous anandamide structure-activity relationship work, the analogues in this study showed high selectivity for the CB1 receptor over CB2. The results are evaluated in terms of stereochemical factors affecting the ligand's affinity for CB1 using receptor-essential volume mapping as an aid. Based on the results, a partial CB1 receptor site model is proposed, that bears two hydrophobic pockets capable of accommodating 1'- and 2-methyl groups  相似文献   
392.
HIV-1 infection has significant effect on the immune system as well as on the nervous system. Breakdown of the blood-brain barrier (BBB) is frequently observed in patients with HIV-associated dementia (HAD) despite lack of productive infection of human brain microvascular endothelial cells (HBMEC). Cellular products and viral proteins secreted by HIV-1 infected cells, such as the HIV-1 Gp120 envelope glycoprotein, play important roles in BBB impairment and HIV-associated dementia development. HBMEC are a major component of the BBB. Using cocultures of HBMEC and human astrocytes as a model system for human BBB as well as in vivo model, we show for the first time that cannabinoid agonists inhibited HIV-1 Gp120-induced calcium influx mediated by substance P and significantly decreased the permeability of HBMEC as well as prevented tight junction protein down-regulation of ZO-1, claudin-5, and JAM-1 in HBMEC. Furthermore, cannabinoid agonists inhibited the transmigration of human monocytes across the BBB and blocked the BBB permeability in vivo. These results demonstrate that cannabinoid agonists are able to restore the integrity of HBMEC and the BBB following insults by HIV-1 Gp120. These studies may lead to better strategies for treatment modalities targeted to the BBB following HIV-1 infection of the brain based on cannabinoid pharmacotherapies.  相似文献   
393.
394.
395.
Oxidatively induced stress and DNA damage have been associated with various human pathophysiological conditions, including cancer and aging. Complex DNA damage such as double-strand breaks (DSBs) and non-DSB bistranded oxidatively induced clustered DNA lesions (OCDL) (two or more DNA lesions within a short DNA fragment of 1-10 bp on opposing DNA strands) are hypothesized to be repair-resistant lesions challenging the repair mechanisms of the cell. To evaluate the induction and processing of complex DNA damage in breast cancer cells exposed to radiotherapy-relevant gamma-ray doses, we measured single-strand breaks (SSBs), DSBs, and OCDL in MCF-7 and HCC1937 malignant cells as well as MCF-10A nonmalignant human breast cells. For the detection and measurement of SSBs, DSBs, and OCDL, we used the alkaline single-cell gel electrophoresis, gamma-H2AX assay, and an adaptation of pulsed-field gel electrophoresis with E. coli repair enzymes as DNA damage probes. Increased levels for most types of DNA damage were detected in MCF-7 cells while the processing of DSBs and OCDL was deficient in these cells compared to MCF-10A cells. Furthermore, the total antioxidant capacity of MCF-7 cells was lower compared to their nonmalignant counterparts. These findings point to the important role of complex DNA damage in breast cancer and its potential association with breast cancer development especially in the case of deficient BRCA1 expression.  相似文献   
396.
A variety of long chain 1,2-diamines and related compounds were synthesized and tested for their activity on fatty acid amide hydrolase (FAAH) and monoacyglycerol lipase (MGL). (2S,9Z)-Octadec-9-ene-1,2-diamine selectively inhibits MGL (K(i) 21.8 microM) without significantly affecting FAAH. This compound exhibited interesting in vivo analgesic and anti-inflammatory properties, suggesting that selective inhibitors of MGL may be valuable novel agents for the treatment of inflammatory pain.  相似文献   
397.
The continuous accumulation of sequence data, for example, due to novel wet-laboratory techniques such as pyrosequencing, coupled with the increasing popularity of multi-gene phylogenies and emerging multi-core processor architectures that face problems of cache congestion, poses new challenges with respect to the efficient computation of the phylogenetic maximum-likelihood (ML) function. Here, we propose two approaches that can significantly speed up likelihood computations that typically represent over 95 per cent of the computational effort conducted by current ML or Bayesian inference programs. Initially, we present a method and an appropriate data structure to efficiently compute the likelihood score on 'gappy' multi-gene alignments. By 'gappy' we denote sampling-induced gaps owing to missing sequences in individual genes (partitions), i.e. not real alignment gaps. A first proof-of-concept implementation in RAXML indicates that this approach can accelerate inferences on large and gappy alignments by approximately one order of magnitude. Moreover, we present insights and initial performance results on multi-core architectures obtained during the transition from an OpenMP-based to a Pthreads-based fine-grained parallelization of the ML function.  相似文献   
398.
Automated data acquisition procedures have changed the perspectives of electron tomography (ET) in a profound manner. Elaborate data acquisition schemes with autotuning functions minimize exposure of the specimen to the electron beam and sophisticated image analysis routines retrieve a maximum of information from noisy data sets. "TOM software toolbox" integrates established algorithms and new concepts tailored to the special needs of low dose ET. It provides a user-friendly unified platform for all processing steps: acquisition, alignment, reconstruction, and analysis. Designed as a collection of computational procedures it is a complete software solution within a highly flexible framework. TOM represents a new way of working with the electron microscope and can serve as the basis for future high-throughput applications.  相似文献   
399.
It is postulated that lipophilic ligands reach their sites of action on membrane-bound functional proteins through fast lateral diffusion across the membrane bilayer. We have shown using NMR experiments that such ligands when incorporated in a membrane system assume a preferred orientation and conformation. While occupying a specific location within the bilayer, these molecules undergo fast lateral diffusion which allows them to engage in productive interactions with their respective protein sites of action. The proposed model is discussed using a group of classical and non-classical cannabinoids as well as the endogenous cannabinoid ligand anandamide.  相似文献   
400.
Endocannabinoids act as retrograde signals to modulate synaptic transmission. Little is known, however, about their significance in integrated network activity underlying motor behavior. We have examined the physiological effects of endocannabinoids in a neuronal network underlying locomotor behavior using the isolated lamprey spinal cord. Our results show that endocannabinoids are released during locomotor activity and participate in setting the baseline burst rate. They are released in response to mGluR1 activation and act as retrograde messengers. This conditional release of endocannabinoids can transform motoneurons and crossing interneurons into modulatory neurons by enabling them to regulate their inhibitory synaptic inputs and thus contribute to the modulation of the locomotor burst frequency. These results provide evidence that endocannabinoid retrograde signaling occurs within the locomotor network and contributes to motor pattern generation and regulation in the spinal cord.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号