首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   12篇
  2023年   3篇
  2022年   7篇
  2021年   16篇
  2020年   5篇
  2019年   5篇
  2018年   7篇
  2017年   4篇
  2016年   6篇
  2015年   11篇
  2014年   9篇
  2013年   13篇
  2012年   12篇
  2011年   11篇
  2010年   5篇
  2009年   5篇
  2008年   6篇
  2007年   7篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   3篇
  2002年   3篇
  2001年   2篇
  1992年   1篇
  1990年   1篇
  1988年   2篇
  1984年   1篇
  1973年   1篇
  1970年   1篇
  1962年   3篇
  1961年   1篇
  1957年   2篇
  1956年   1篇
  1955年   2篇
  1953年   1篇
  1950年   1篇
  1920年   2篇
排序方式: 共有164条查询结果,搜索用时 881 毫秒
101.
The Nrf2-Keap1 signaling pathway is a protective mechanism promoting cell survival. Activation of the Nrf2 pathway by natural compounds has been proven to be an effective strategy for chemoprevention. Interestingly, a cancer-promoting function of Nrf2 has recently been observed in many types of tumors due to deregulation of the Nrf2-Keap1 axis, which leads to constitutive activation of Nrf2. Here, we report a novel mechanism of Nrf2 activation by arsenic that is distinct from that of chemopreventive compounds. Arsenic deregulates the autophagic pathway through blockage of autophagic flux, resulting in accumulation of autophagosomes and sequestration of p62, Keap1, and LC3. Thus, arsenic activates Nrf2 through a noncanonical mechanism (p62 dependent), leading to a chronic, sustained activation of Nrf2. In contrast, activation of Nrf2 by sulforaphane (SF) and tert-butylhydroquinone (tBHQ) depends upon Keap1-C151 and not p62 (the canonical mechanism). More importantly, SF and tBHQ do not have any effect on autophagy. In fact, SF and tBHQ alleviate arsenic-mediated deregulation of autophagy. Collectively, these findings provide evidence that arsenic causes prolonged activation of Nrf2 through autophagy dysfunction, possibly providing a scenario similar to that of constitutive activation of Nrf2 found in certain human cancers. This may represent a previously unrecognized mechanism underlying arsenic toxicity and carcinogenicity in humans.  相似文献   
102.
Cytochrome P450(BM3)-F87G catalyzed the oxidative defluorination of 4-fluorophenol, followed by reduction of the resulting benzoquinone to hydroquinone via the NADPH P450-reductase activity of the enzyme. The k (cat) and K (m) for this reaction were 71?±?5?min(-1) and 9.5?±?1.3?mM, respectively. Co-incubation of the reaction mixture with long chain aldehydes stimulated the defluorination reaction, with the 2,3-unsaturated aldehyde, 2-decenal producing a 12-fold increase in catalytic efficiency. At 150?μM aldehyde, k (cat) increased to 158?±?4, while K (m) decreased to 1.8?±?0.2. The effects of catalase, glutathione and ascorbate on the reaction were all consistent with a direct oxygen insertion mechanism, as opposed to a radical mechanism. The study demonstrates the potential use of P450(BM3) mutants in oxidative defluorination reactions, and characterizes the novel stimulatory action of straight chain aldehydes on this activity.  相似文献   
103.
Many fish, including the fighting fish Betta splendens , perform a display in which the opercula are extended away from the head and gills. Previous work has shown that opercular display rates by male B. splendens decrease under conditions of reduced dissolved oxygen (hypoxia). We tested the hypothesis that the ability to maintain opercular display rates under hypoxic conditions is related to body condition in male B. splendens . We also tested the hypothesis that females would show a greater preference for males performing this display under hypoxic conditions, when the display should be a more reliable indicator of male phenotypic quality. We found no evidence to support either hypothesis. Male opercular display rate in hypoxic conditions was unrelated to natural or experimentally induced variation in body condition. Female B. splendens showed no differential preference for the opercular display, assessed through the use of computer animated male stimuli, in either acute or chronic hypoxia. We conclude that the presence of an air-breathing organ in this species makes the opercular display an unreliable signal of male quality as measured by body condition.  相似文献   
104.
Sonic hedgehog signaling in the secondary heart field has a clear role in cardiac arterial pole development. In the absence of hedgehog signaling, proliferation is reduced in secondary heart field progenitors, and embryos predominantly develop pulmonary atresia. While it is expected that proliferation in the secondary heart field would be increased with elevated hedgehog signaling, this idea has never been tested. We hypothesized that up-regulating hedgehog signaling would increase secondary heart field proliferation, which would lead to arterial pole defects. In culture, secondary heart field explants proliferated up to 6-fold more in response to the hedgehog signaling agonist SAG, while myocardial differentiation and migration were unaffected. Treatment of chick embryos with SAG at HH14, just before the peak in secondary heart field proliferation, resulted unexpectedly in stenosis of both the aortic and pulmonary outlets. We examined proliferation in the secondary heart field and found that SAG-treated embryos exhibited a much milder increase in proliferation than was indicated by the in vitro experiments. To determine the source of other signaling factors that could modulate increased hedgehog signaling, we co-cultured secondary heart field explants with isolated pharyngeal endoderm or outflow tract and found that outflow tract co-cultures prevented SAG-induced proliferation. BMP2 is made and secreted by the outflow tract myocardium. To determine whether BMP signaling could prevent SAG-induced proliferation, we treated explants with SAG and BMP2 and found that BMP2 inhibited SAG-induced proliferation. In vivo, SAG-treated embryos showed up-regulated BMP2 expression and signaling. Together, these results indicate that BMP signaling from the outflow tract modulates hedgehog-induced proliferation in the secondary heart field.  相似文献   
105.
To identify proteins interacting in the insulin-signaling pathway that might define new pathways or regulate existing ones, we have employed the yeast two-hybrid system. In a two-hybrid screen of a human liver cDNA library, we identified the human growth factor receptor bound 14 (hGrb14) adaptor protein as a partner of the activated insulin receptor. Additional analysis of the insulin receptor--hGrb14 interaction in the yeast two-hybrid system revealed that the SH2 domain of hGrb14 was not the sole region involved in binding the activated insulin receptor. The insulin-stimulated interaction between hGrb14 and the insulin receptor was also observed in different mammalian cultured cell lines. This association was detected at 1 min of insulin stimulation and was maximal at 10 nM and greater concentrations of insulin. Chinese hamster ovary cells stably expressing the insulin receptor (CHO-IR) and hGrb14 were used to examine the effects of hGrb14 overexpression on insulin-stimulated tyrosine phosphorylation of proteins; in general, increasing levels of hGrb14 expression resulted in a reduction in tyrosine phosphorylation. This decrease was demonstrated for the specific proteins src homology-containing and collagen-related protein (Shc), insulin receptor substrate-1 (IRS-1), and Downstream of tyrosine Kinase (Dok). The broad effects of hGrb14 overexpression on insulin-stimulated tyrosine phosphorylation suggest that it acts early in the insulin-signaling pathway.  相似文献   
106.
Cyclin-dependent kinase 5 is predominantly expressed in postmitotic neurons and plays a role in neurite elongation during development. It has also been postulated to play a role in apoptosis in a variety of cells, including neurons, but little is known about the generality and functional significance of cdk5 expression in neuronal apoptosis in living brain. We have therefore examined its expression and that of its known activators, p35, p39 and p67, in models of induced apoptosis in neurons of the substantia nigra. We find that cdk5 is expressed in apoptotic profiles following intrastriatal injection of 6-hydroxydopamine and axotomy. It is expressed exclusively in profiles which are in late morphologic stages of apoptosis. In these late stages, derivation of the profiles from neurons, and localization of expression to the nucleus, can be demonstrated by co-labeling with a neuron-specific nuclear marker, NeuN. In another model of induced apoptotic death in nigra, produced by developmental striatal lesion, kinase activity increases in parallel with cell death. While mRNAs for all three cdk5 activators are expressed in nigra during development, only p35 protein is expressed in apoptotic profiles. We conclude that cdk5/p35 expression is a general feature of apoptotic neuron death in substantia nigra neurons in vivo.  相似文献   
107.
Gap junctions coordinate processes ranging from muscle contraction to ovarian follicle development. Here we show that the gap junction protein Zero population growth (Zpg) is required for germ cell differentiation in the Drosophila ovary. In the absence of Zpg the stem cell daughter destined to differentiate dies. The zpg phenotype is novel, and we used this phenotype to genetically dissect the process of stem cell maintenance and differentiation. Our findings suggest that germ line stem cells differentiate upon losing contact with their niche, that gap junction mediated cell-cell interactions are required for germ cell differentiation, and that in Drosophila germ line stem cell differentiation to a cystoblast is gradual.  相似文献   
108.
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号