首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4839篇
  免费   379篇
  国内免费   1篇
  2024年   4篇
  2023年   30篇
  2022年   70篇
  2021年   176篇
  2020年   108篇
  2019年   144篇
  2018年   145篇
  2017年   143篇
  2016年   209篇
  2015年   312篇
  2014年   306篇
  2013年   364篇
  2012年   425篇
  2011年   426篇
  2010年   243篇
  2009年   228篇
  2008年   274篇
  2007年   285篇
  2006年   265篇
  2005年   228篇
  2004年   187篇
  2003年   165篇
  2002年   148篇
  2001年   38篇
  2000年   26篇
  1999年   36篇
  1998年   36篇
  1997年   7篇
  1996年   12篇
  1995年   7篇
  1994年   12篇
  1993年   6篇
  1992年   13篇
  1991年   17篇
  1990年   7篇
  1989年   10篇
  1988年   9篇
  1987年   8篇
  1986年   11篇
  1985年   6篇
  1984年   8篇
  1982年   9篇
  1981年   5篇
  1980年   3篇
  1979年   5篇
  1977年   3篇
  1975年   7篇
  1974年   6篇
  1971年   6篇
  1970年   3篇
排序方式: 共有5219条查询结果,搜索用时 929 毫秒
181.
The effect of temperature on the activity and structural stability of an acid phosphatase (EC 3.1.3.2.) purified from castor bean (Ricinus communis L.) seeds have been examined. The enzyme showed high activity at 45 degrees C using p-nitrophenylphosphate (p-NPP) as substrate. The activation energy for the catalyzed reaction was 55.2 kJ mol(-1) and the enzyme maintained 50% of its activity even after 30 min at 55 degrees C. Thermal inactivation studies showed an influence of pH in the loss of enzymatic activity at 60 degrees C. A noticeable protective effect from thermal inactivation was observed when the enzyme was preincubated, at 60 degrees C, with the reaction products inorganic phosphate-P (10 mM) and p-nitrophenol-p-NP(10 mM). Denaturation studies showed a relatively high transition temperature (Tm) value of 75 degrees C and an influence of the combination of Pi (10 mM) and p-NP (10 mM) was observed on the conformational behaviour of the macromolecule.  相似文献   
182.
183.
Hsu ST  Bonvin AM 《Proteins》2004,55(3):582-593
The entry of HIV-1 into a target cell requires gp120 and receptor CD4 as well as coreceptor CCR5/CXCR4 recognition events associated with conformational changes of the involved proteins. The binding of CD4 to gp120 is the initiation step of the whole process involving structural rearrangements that are crucial for subsequent pathways. Despite the wealth of knowledge about the gp120/CD4 interactions, details of the conformational changes occurring at this stage remain elusive. We have performed molecular dynamics simulations in explicit solvent based on the gp120/CD4/CD4i crystal structure in conjunction with modeled V3 and V4 loops to gain insight into the dynamics of the binding process. Three differentiated interaction modes between CD4 and gp120 were found, which involve electrostatics, hydrogen bond and van der Waals networks. A "binding funnel" model is proposed based on the dynamical nature of the binding interface together with a CD4-attraction gradient centered in gp120 at the CD4-Phe43-binding cavity. Distinct dynamical behaviors of free and CD4-bound gp120 were monitored, which likely represent the ground and pre-fusogenic states, respectively. The transition between these states revealed concerted motions in gp120 leading to: i) loop contractions around the CD4-Phe43-insertion cavity; ii) stabilization of the four-stranded "bridging sheet" structure; and iii) translocation and clustering of the V3 loop and the bridging sheet leading to the formation of the coreceptor binding site. Our results provide new insight into the dynamic of the underlying molecular recognition mechanism that complements the biochemical and structural studies.  相似文献   
184.
185.
The genome sequence of Leifsonia xyli subsp. xyli, which causes ratoon stunting disease and affects sugarcane worldwide, was determined. The single circular chromosome of Leifsonia xyli subsp. xyli CTCB07 was 2.6 Mb in length with a GC content of 68% and 2,044 predicted open reading frames. The analysis also revealed 307 predicted pseudogenes, which is more than any bacterial plant pathogen sequenced to date. Many of these pseudogenes, if functional, would likely be involved in the degradation of plant heteropolysaccharides, uptake of free sugars, and synthesis of amino acids. Although L. xyli subsp. xyli has only been identified colonizing the xylem vessels of sugarcane, the numbers of predicted regulatory genes and sugar transporters are similar to those in free-living organisms. Some of the predicted pathogenicity genes appear to have been acquired by lateral transfer and include genes for cellulase, pectinase, wilt-inducing protein, lysozyme, and desaturase. The presence of the latter may contribute to stunting, since it is likely involved in the synthesis of abscisic acid, a hormone that arrests growth. Our findings are consistent with the nutritionally fastidious behavior exhibited by L. xyli subsp. xyli and suggest an ongoing adaptation to the restricted ecological niche it inhabits.  相似文献   
186.
Calophyllum brasiliense (Clusiaceae/Guttiferae) is a native Brazilian medicinal plant traditionally used against several diseases, including infectious pathologies. Crude methanolic extracts (CME) and two fractions, denoted non-polar (soluble in chloroform) and polar (nonsoluble in chloroform), were prepared from different parts of the plant (roots, stems, leaves, flowers and fruits) and studied. The following compounds were isolated and tested against pathogenic bacteria and yeasts by determination of the minimal inhibitory concentration (MIC): brasiliensic acid (1), gallic acid (2), epicatechin (3), protocatechuic acid (4), friedelin (5) and 1,5-dihydroxyxanthone (6). The results indicated that all the parts of the plant exhibited antimicrobial activity against Gram-positive bacteria, which are selectively inhibited by components of C. brasiliense. No activity was observed against Gram-negative bacteria and yeasts tested. Regarding the isolated compounds, substance 4 showed antimicrobial activity against all the tested microorganisms, whereas compound 6 exhibited antimicrobial activity only against Gram-positive bacteria. The results from the current study confirm and justify the popular use of this plant to treat infectious processes.  相似文献   
187.
188.
189.
A method of preparing a thin polymer layer able to recognize double-stranded DNA (dsDNA) was developed by using 2-vinyl-4,6-diamino-1,3,5-triazine (VDAT) as a functional monomer for creating a DNA-imprinted polymer. The formation of hydrogen bonds between VDAT and A-T base pairs in dsDNA was confirmed by measuring the effects of VDAT on the melting point and the NMR and CD spectra of dsDNA. An imprinted polymer that can recognize dsDNA of the verotoxin gene was prepared by polymerizing VDAT, acrylamide, a crosslinking agent, and the template verotoxin dsDNA on a silanized glass surface. The specificity of this polymer layer for binding verotoxin dsDNA was investigated by using fluorescent-labelled dsDNAs. The fluorescence intensity of the polymer layer after binding verotoxin dsDNA was twice as high as after binding oligo(dG)-oligo(dC), indicating that verotoxin dsDNA was preferentially bound to the polymer imprinted with verotoxin dsDNA. The kinetics of verotoxin dsDNA binding to the imprinted polymer were analyzed by surface plasmon resonance measurements. The dissociation constant (KD) was low, of the order of 10(-9)M.  相似文献   
190.
The oligopeptide permease (Opp), a protein-dependent ABC transporter, has been found in the genome of Xanthomonas axonopodis pv. citri (Xac), but not in Xanthomonas campestris pv. campestris (Xcc). Sequence analysis indicated that 4 opp genes (oppA, oppB, oppC, oppD/F), located in a 33.8-kbp DNA fragment present only in the Xac genome, are arranged in an operon-like structure and share highest sequence similarities with Streptomyces roseofulvus orthologs. Nonetheless, analyses of the GC content, codon usage, and transposon positioning suggested that the Xac opp operon does not have an exogenous origin. The presence of a stop codon at one of the ATP-binding domains of OppD/F would render the uptake system nonfunctional, but detection of a single polycistronic mRNA and periplasmic OppA in actively growing bacteria suggests that the Opp permease is active and could contribute to the distinct nutritional requirements and host specificities of the two Xanthomonas species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号