全文获取类型
收费全文 | 4858篇 |
免费 | 384篇 |
国内免费 | 1篇 |
专业分类
5243篇 |
出版年
2024年 | 5篇 |
2023年 | 34篇 |
2022年 | 77篇 |
2021年 | 176篇 |
2020年 | 108篇 |
2019年 | 144篇 |
2018年 | 145篇 |
2017年 | 143篇 |
2016年 | 209篇 |
2015年 | 312篇 |
2014年 | 306篇 |
2013年 | 364篇 |
2012年 | 425篇 |
2011年 | 426篇 |
2010年 | 244篇 |
2009年 | 228篇 |
2008年 | 276篇 |
2007年 | 285篇 |
2006年 | 265篇 |
2005年 | 230篇 |
2004年 | 189篇 |
2003年 | 166篇 |
2002年 | 148篇 |
2001年 | 38篇 |
2000年 | 26篇 |
1999年 | 36篇 |
1998年 | 36篇 |
1997年 | 7篇 |
1996年 | 12篇 |
1995年 | 7篇 |
1994年 | 12篇 |
1993年 | 6篇 |
1992年 | 13篇 |
1991年 | 18篇 |
1990年 | 9篇 |
1989年 | 10篇 |
1988年 | 9篇 |
1987年 | 8篇 |
1986年 | 11篇 |
1985年 | 6篇 |
1984年 | 8篇 |
1982年 | 9篇 |
1981年 | 5篇 |
1980年 | 3篇 |
1979年 | 6篇 |
1977年 | 3篇 |
1975年 | 7篇 |
1974年 | 6篇 |
1971年 | 6篇 |
1970年 | 3篇 |
排序方式: 共有5243条查询结果,搜索用时 31 毫秒
111.
Erika R. Kinjo Guilherme S. V. Higa Edgard Morya Angela C. Valle Alexandre H. Kihara Luiz R. G. Britto 《PloS one》2014,9(10)
Gap junction (GJ) channels have been recognized as an important mechanism for synchronizing neuronal networks. Herein, we investigated the participation of GJ channels in the pilocarpine-induced status epilepticus (SE) by analyzing electrophysiological activity following the blockade of connexins (Cx)-mediated communication. In addition, we examined the regulation of gene expression, protein levels, phosphorylation profile and distribution of neuronal Cx36, Cx45 and glial Cx43 in the rat hippocampus during the acute and latent periods. Electrophysiological recordings revealed that the GJ blockade anticipates the occurrence of low voltage oscillations and promotes a marked reduction of power in all analyzed frequencies.Cx36 gene expression and protein levels remained stable in acute and latent periods, whereas upregulation of Cx45 gene expression and protein redistribution were detected in the latent period. We also observed upregulation of Cx43 mRNA levels followed by changes in the phosphorylation profile and protein accumulation. Taken together, our results indisputably revealed that GJ communication participates in the epileptiform activity induced by pilocarpine. Moreover, considering that specific Cxs undergo alterations through acute and latent periods, this study indicates that the control of GJ communication may represent a focus in reliable anti-epileptogenic strategies. 相似文献
112.
Berney A Nishikawa M Benkelfat C Debonnel G Gobbi G Diksic M 《Neurochemistry international》2008,52(4-5):701-708
The antidepressant selective serotonin transporter inhibitors (SSRIs) are clinically active after a delay of several weeks. Indeed, the rapid increase of serotonin (5-HT) caused by SSRIs, stimulates the 5-HT(1A) autoreceptors, which exert a negative feedback on the 5-HT neurotransmission. Only when autoreceptors are desensitized, can SSRIs exert their therapeutic activity. The 5-HT(1A) receptor antagonist pindolol has been used to accelerate the clinical effects of antidepressant by preventing the negative feedback. Using the alpha-[(11)C]methyl-L-tryptophan/positron emission tomography (PET), the goal of the present double-blind, randomized study was to compare the changes in alpha-[(11)C]methyl-L-tryptophan trapping, an index of serotonin synthesis, in patients suffering from unipolar depression treated with the SSRI citalopram (20 mg/day) plus placebo versus patients treated with citalopram plus pindol (7.5 mg/day). PET and Hamilton depression rating scale (HDRS-17) were performed at baseline, and after 10 and 24 days of antidepressant treatment. Results show that the combination citalopram plus pindol, compared to citalopram alone shows a more rapid and greater increase of an index of 5-HT synthesis in prefrontal cortex (BA 9). This research is the first human PET study demonstrating that, after 24 days, the combination SSRIs plus pindolol produces a greater increase of the metabolism of serotonin in the prefrontal cortex, an area associated to depressive symptoms. 相似文献
113.
In this paper, the localized surface plasmon resonance (LSPR) peak position of an ordered gold nanoparticles array embedded in a nematic liquid crystal (LC) media is investigated using finite-difference time-domain method. The influence of the anchoring effects between nematic LC molecules and glass substrate on the shift of LSPR wavelength is taken into account, and results are compared with the case of a perfect alignment of the LC molecules. 相似文献
114.
115.
Timothy A. Stammers René Coulombe Martin Duplessis Gulrez Fazal Alexandre Gagnon Michel Garneau Sylvie Goulet Araz Jakalian Steven LaPlante Jean Rancourt Bounkham Thavonekham Dominik Wernic George Kukolj Pierre L. Beaulieu 《Bioorganic & medicinal chemistry letters》2013,23(24):6879-6885
Optimization efforts on the anthranilic acid-based Thumb Pocket 2 HCV NS5B polymerase inhibitors 1 and 2 resulted in the identification of multiple structural elements that contributed to improved cell culture potency. The additive effect of these elements resulted in compound 46, an inhibitor with enzymatic (IC50) and cell culture (EC50) potencies of less than 100 nanomolar. 相似文献
116.
Kristen M. Varney Alexandre M. J. J. Bonvin Marzena Pazgier Jakob Malin Wenbo Yu Eugene Ateh Taiji Oashi Wuyuan Lu Jing Huang Marlies Diepeveen-de Buin Joseph Bryant Eefjan Breukink Alexander D. MacKerell Jr Erik P. H. de Leeuw 《PLoS pathogens》2013,9(11)
We have previously reported on the functional interaction of Lipid II with human alpha-defensins, a class of antimicrobial peptides. Lipid II is an essential precursor for bacterial cell wall biosynthesis and an ideal and validated target for natural antibiotic compounds. Using a combination of structural, functional and in silico analyses, we present here the molecular basis for defensin-Lipid II binding. Based on the complex of Lipid II with Human Neutrophil peptide-1, we could identify and characterize chemically diverse low-molecular weight compounds that mimic the interactions between HNP-1 and Lipid II. Lead compound BAS00127538 was further characterized structurally and functionally; it specifically interacts with the N-acetyl muramic acid moiety and isoprenyl tail of Lipid II, targets cell wall synthesis and was protective in an in vivo model for sepsis. For the first time, we have identified and characterized low molecular weight synthetic compounds that target Lipid II with high specificity and affinity. Optimization of these compounds may allow for their development as novel, next generation therapeutic agents for the treatment of Gram-positive pathogenic infections. 相似文献
117.
118.
Nicola Saino Luca Canova Alessandra Costanzo Diego Rubolini Alexandre Roulin Anders Pape Møller 《Evolutionary biology》2013,40(4):521-531
Eumelanin and pheomelanin are the main endogenous pigments in animals and melanin-based coloration has multiple functions. Melanization is associated with major life-history traits, including immune and stress response, possibly because of pleiotropic effects of genes that control melanogenesis. The net effects on pheo- versus eumelanization and other life-history traits may depend on the antagonistic effects of the genes that trigger the biosynthesis of either melanin form. Covariation between melanin-based pigmentation and fitness traits enforced by pleiotropic genes has major evolutionary implications particularly for socio-sexual communication. However, evidence from non-model organisms in the wild is limited to very few species. Here, we tested the hypothesis that melanin-based coloration of barn swallow (Hirundo rustica) throat and belly feathers covaries with acquired immunity and activation of the hypothalamic–pituitary–adrenal (HPA) axis, as gauged by corticosterone plasma levels. Individuals of both sexes with darker brownish belly feathers had weaker humoral immune response, while darker males had higher circulating corticosterone levels only when parental workload was experimentally reduced. Because color of belly feathers depends on both eu- and pheomelanin, and its darkness decreases with an increase in the concentration of eu- relative to pheomelanin, these results are consistent with our expectation that relatively more eu- than pheomelanized individuals have better immune response and smaller activation of the HPA-axis. Covariation of immune and stress response arose for belly but not throat feather color, suggesting that any function of color as a signal of individual quality or of alternative life-history strategies depends on plumage region. 相似文献
119.
Benjamin T. Goult Neil Bate Nicholas J. Anthis Kate L. Wegener Alexandre R. Gingras Bipin Patel Igor L. Barsukov Iain D. Campbell Gordon C. K. Roberts David R. Critchley 《The Journal of biological chemistry》2009,284(22):15097-15106
Talin is a large flexible rod-shaped protein that activates the integrin
family of cell adhesion molecules and couples them to cytoskeletal actin. It
exists in both globular and extended conformations, and an intramolecular
interaction between the N-terminal F3 FERM subdomain and the C-terminal part
of the talin rod contributes to an autoinhibited form of the molecule. Here,
we report the solution structure of the primary F3 binding domain within the
C-terminal region of the talin rod and use intermolecular nuclear Overhauser
effects to determine the structure of the complex. The rod domain (residues
1655–1822) is an amphipathic five-helix bundle; Tyr-377 of F3 docks into
a hydrophobic pocket at one end of the bundle, whereas a basic loop in F3
(residues 316–326) interacts with a cluster of acidic residues in the
middle of helix 4. Mutation of Glu-1770 abolishes binding. The rod domain
competes with β3-integrin tails for binding to F3, and the structure of
the complex suggests that the rod is also likely to sterically inhibit binding
of the FERM domain to the membrane.The cytoskeletal protein talin has emerged as a key player, both in
regulating the affinity of the integrin family of cell adhesion molecules for
ligand (1) and in coupling
integrins to the actin cytoskeleton
(2). Thus, depletion of talin
results in defects in integrin activation
(3), integrin signaling through
focal adhesion kinase, the maintenance of cell spreading, and the assembly of
focal adhesions in cultured cells
(4). In the whole organism,
studies on the single talin gene in worms
(5) and flies
(6) show that talin is
essential for a variety of integrin-mediated events that are crucial for
normal embryonic development. In vertebrates, there are two talin
genes, and mice carrying a talin1 null allele fail to complete
gastrulation (7).
Tissue-specific inactivation of talin1 results in an inability to activate
integrins in platelets (8,
9), defects in the
membrane-cytoskeletal interface in megakaryocytes
(10), and disruption of the
myotendinous junction in skeletal muscle
(11). In contrast, mice
homozygous for a talin2 gene trap allele have no phenotype, although
the allele may be hypomorphic
(12).Recent structural studies have provided substantial insights into the
molecular basis of talin action. Talin is composed of an N-terminal globular
head (∼50 kDa) linked to an extended flexible rod (∼220 kDa). The
talin head contains a
FERM2 domain (made up
of F1, F2, and F3 subdomains) preceded by a domain referred to here as F0
(2). Studies by Wegener et
al. (30) have shown how
the F3 FERM subdomain, which has a phosphotyrosine binding domain fold,
interacts with both the canonical NPXY motif and the
membrane-proximal helical region of the cytoplasmic tails of integrin
β-subunits (13). The
latter interaction apparently activates the integrin by disrupting the salt
bridge between the integrin α- and β-subunit tails that normally
keeps integrins locked in a low affinity state. The observation that the F0
region is also important in integrin activation
(14) may be explained by our
recent finding that F0 binds, albeit with low affinity,
Rap1-GTP,3 a known
activator of integrins (15,
16). The talin rod is made up
of a series of amphipathic α-helical bundles
(17–20)
and contains a second integrin binding site (IBS2)
(21), numerous binding sites
for the cytoskeletal protein vinculin
(22), at least two actin
binding sites (23), and a
C-terminal helix that is required for assembly of talin dimers
(20,
24).Both biochemical (25) and
cellular studies (16) suggest
that the integrin binding sites in full-length talin are masked, and both
phosphatidylinositol 4,5-bisphosphate (PIP2) and Rap1 have been implicated in
exposing these sites. It is well established that some members of the FERM
domain family of proteins are regulated by a head-tail interaction
(26); gel filtration,
sedimentation velocity, and electron microscopy studies all show that talin is
globular in low salt buffers, although it is more elongated (∼60 nm in
length) in high salt (27). By
contrast, the talin rod liberated from full-length talin by calpain-II
cleavage is elongated in both buffers, indicating that the head is required
for talin to adopt a more compact state. Direct evidence for an interaction
between the talin head and rod has recently emerged from NMR studies by Goksoy
et al. (28), who
demonstrated binding of 15N-labeled talin F3 to a talin rod
fragment spanning residues 1654–2344, an interaction that was confirmed
by surface plasmon resonance (Kd = 0.57 μm)
(28). Chemical shift data also
showed that this segment of the talin rod partially masked the binding site in
F3 for the membraneproximal helix of the β3-integrin tail
(28), directly implicating the
talin head-rod interaction in regulating the integrin binding activity of
talin. Goksoy et al.
(28) subdivided the F3 binding
site in this rod fragment into two sites with higher affinity
(Kd ∼3.6 μm; residues 1654–1848)
and lower affinity (Kd ∼78 μm; residues
1984–2344). Here, we define the rod domain boundaries and determine the
NMR structure of residues 1655–1822, a five-helix bundle. We further
show that this domain binds F3 predominantly via surface-exposed residues on
helix 4, with an affinity similar to the high affinity site reported by Goksoy
et al. (28). We also
report the structure of the complex between F3 and the rod domain and show
that the latter masks the known binding site in F3 for the β3-integrin
tail and is expected to inhibit the association of the talin FERM domain with
the membrane. 相似文献
120.
Fernanda Palhano-Fontes Katia C. Andrade Luis F. Tofoli Antonio C. Santos Jose Alexandre S. Crippa Jaime E. C. Hallak Sidarta Ribeiro Draulio B. de Araujo 《PloS one》2015,10(2)
The experiences induced by psychedelics share a wide variety of subjective features, related to the complex changes in perception and cognition induced by this class of drugs. A remarkable increase in introspection is at the core of these altered states of consciousness. Self-oriented mental activity has been consistently linked to the Default Mode Network (DMN), a set of brain regions more active during rest than during the execution of a goal-directed task. Here we used fMRI technique to inspect the DMN during the psychedelic state induced by Ayahuasca in ten experienced subjects. Ayahuasca is a potion traditionally used by Amazonian Amerindians composed by a mixture of compounds that increase monoaminergic transmission. In particular, we examined whether Ayahuasca changes the activity and connectivity of the DMN and the connection between the DMN and the task-positive network (TPN). Ayahuasca caused a significant decrease in activity through most parts of the DMN, including its most consistent hubs: the Posterior Cingulate Cortex (PCC)/Precuneus and the medial Prefrontal Cortex (mPFC). Functional connectivity within the PCC/Precuneus decreased after Ayahuasca intake. No significant change was observed in the DMN-TPN orthogonality. Altogether, our results support the notion that the altered state of consciousness induced by Ayahuasca, like those induced by psilocybin (another serotonergic psychedelic), meditation and sleep, is linked to the modulation of the activity and the connectivity of the DMN. 相似文献