首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4909篇
  免费   383篇
  国内免费   1篇
  5293篇
  2024年   5篇
  2023年   34篇
  2022年   76篇
  2021年   176篇
  2020年   108篇
  2019年   144篇
  2018年   145篇
  2017年   143篇
  2016年   209篇
  2015年   312篇
  2014年   306篇
  2013年   364篇
  2012年   425篇
  2011年   427篇
  2010年   243篇
  2009年   228篇
  2008年   276篇
  2007年   286篇
  2006年   265篇
  2005年   230篇
  2004年   189篇
  2003年   166篇
  2002年   149篇
  2001年   39篇
  2000年   30篇
  1999年   40篇
  1998年   37篇
  1997年   8篇
  1996年   12篇
  1995年   7篇
  1994年   15篇
  1993年   6篇
  1992年   15篇
  1991年   18篇
  1990年   11篇
  1989年   14篇
  1988年   11篇
  1987年   12篇
  1986年   11篇
  1985年   10篇
  1984年   9篇
  1983年   8篇
  1982年   13篇
  1981年   6篇
  1980年   4篇
  1979年   8篇
  1977年   5篇
  1975年   8篇
  1974年   6篇
  1971年   6篇
排序方式: 共有5293条查询结果,搜索用时 15 毫秒
41.
Azoles inhibit ergosterol biosynthesis, resulting in ergosterol depletion and accumulation of toxic 14α-methylated sterols in membranes of susceptible yeast. We demonstrated previously that miconazole induces actin cytoskeleton stabilization in Saccharomyces cerevisiae prior to induction of reactive oxygen species, pointing to an ancillary mode of action. Using a genome-wide agar-based screening, we demonstrate in this study that S. cerevisiae mutants affected in sphingolipid and ergosterol biosynthesis, namely ipt1, sur1, skn1, and erg3 deletion mutants, are miconazole-resistant, suggesting an involvement of membrane rafts in its mode of action. This is supported by the antagonizing effect of membrane raft-disturbing compounds on miconazole antifungal activity as well as on miconazole-induced actin cytoskeleton stabilization and reactive oxygen species accumulation. These antagonizing effects point to a primary role for membrane rafts in miconazole antifungal activity. We further show that this primary role of membrane rafts in miconazole action consists of mediating intracellular accumulation of miconazole in yeast cells.  相似文献   
42.
Integrins are cell adhesion receptors that mediate cell-to-cell, or cell-to-extracellular matrix adhesion. They represent an attractive target for treatment of multiple diseases. Two classes of small molecule integrin inhibitors have been developed. Competitive antagonists bind directly to the integrin ligand binding pocket and thus disrupt the ligand-receptor interaction. Allosteric antagonists have been developed primarily for α(L)β(2)- integrin (LFA-1, lymphocyte function-associated antigen-1). Here we present the results of screening the Prestwick Chemical Library using a recently developed assay for the detection of α(4)β(1)-integrin allosteric antagonists. Secondary assays confirmed that the compounds identified: 1) do not behave like competitive (direct) antagonists; 2) decrease ligand binding affinity for VLA-4 ~2 orders of magnitude; 3) exhibit antagonistic properties at low temperature. In a cell based adhesion assay in vitro, the compounds rapidly disrupted cellular aggregates. In accord with reports that VLA-4 antagonists in vivo induce mobilization of hematopoietic progenitors into the peripheral blood, we found that administration of one of the compounds significantly increased the number of colony-forming units in mice. This effect was comparable to AMD3100, a well known progenitor mobilizing agent. Because all the identified compounds are structurally related, previously used, or currently marketed drugs, this result opens a range of therapeutic possibilities for VLA-4-related pathologies.  相似文献   
43.
44.
While several studies have established a positive correlation between community diversity and invasion resistance, it is less clear how species interactions within resident communities shape this process. Here, we experimentally tested how antagonistic and facilitative pairwise interactions within resident model microbial communities predict invasion by the plant–pathogenic bacterium Ralstonia solanacearum. We found that facilitative resident community interactions promoted and antagonistic interactions suppressed invasions both in the lab and in the tomato plant rhizosphere. Crucially, pairwise interactions reliably explained observed invasion outcomes also in multispecies communities, and mechanistically, this was linked to direct inhibition of the invader by antagonistic communities (antibiosis), and to a lesser degree by resource competition between members of the resident community and the invader. Together, our findings suggest that the type and strength of pairwise interactions can reliably predict the outcome of invasions in more complex multispecies communities.  相似文献   
45.
Background. Integrins are transmembrane αβ heterodimer receptors that function as structural and functional bridges between the cytoskeleton and ECM (extracellular matrix) molecules. The RGD (arginine‐glycine‐aspartate tripeptide motif)‐dependent integrin α8β1 has been shown to be involved in various cell functions in neuronal and mesenchymal‐derived cell types. Its role in epithelial cells remains unknown. Results. Integrin α8β1 was found to be expressed in the crypt cell population of the human intestine but was absent from differentiating and mature epithelial cells of the villus. The function of α8β1 in epithelial crypt cells was investigated at the cellular level using normal HIECs (human intestinal epithelial cells). Specific knockdown of α8 subunit expression using an shRNA (small‐hairpin RNA) approach showed that α8β1 plays important roles in RGD‐dependent cell adhesion, migration and proliferation via a RhoA/ROCK (Rho‐associated kinase)‐dependent mechanism as demonstrated by active RhoA quantification and pharmacological inhibition of ROCK. Moreover, loss of α8β1, through RhoA/ROCK, impairs FA (focal adhesion) complex integrity as demonstrated by faulty vinculin recruitment. Conclusions. Integrin α8β1 is expressed in epithelial cells. In intestinal crypt cells, α8β1 is closely involved in the regulation of adhesion, migration and cell proliferation via a predominant RhoA/ROCK‐dependent mechanism. These results suggest an important role for this integrin in intestinal crypt cell homoeostasis.  相似文献   
46.
Long terminal repeat retrotransposons (LTR‐RTs) represent a major fraction of plant genomes, but processes leading to transposition bursts remain elusive. Polyploidy expectedly leads to LTR‐RT proliferation, as the merging of divergent diploids provokes a genome shock activating LTR‐RTs and/or genetic redundancy supports the accumulation of active LTR‐RTs through relaxation of selective constraints. Available evidence supports interspecific hybridization as the main trigger of genome dynamics, but few studies have addressed the consequences of intraspecific polyploidy (i.e. autopolyploidy), where the genome shock is expectedly minimized. The dynamics of LTR‐RTs was thus here evaluated through low coverage 454 sequencing of three closely related diploid progenitors and three independent autotetraploids from the young Biscutella laevigata species complex. Genomes from this early diverging Brassicaceae lineage presented a minimum of 40% repeats and a large diversity of transposable elements. Differential abundances and patterns of sequence divergence among genomes for 37 LTR‐RT families revealed contrasted dynamics during species diversification. Quiescent LTR‐RT families with limited genetic variation among genomes were distinguished from active families (37.8%) having proliferated in specific taxa. Specific families proliferated in autopolyploids only, but most transpositionally active families in polyploids were also differentiated among diploids. Low expression levels of transpositionally active LTR‐RT families in autopolyploids further supported that genome shock and redundancy are non‐mutually exclusive triggers of LTR‐RT proliferation. Although reputed stable, autopolyploid genomes show LTR‐RT fractions presenting analogies with polyploids between widely divergent genomes.  相似文献   
47.
48.
For decades there have been anecdotal claims of synergistic interactions between plant-parasitic nematodes and soil-borne fungi causing decline of productivity of passion fruit (Passiflora edulis) orchards. An empirical confirmation of these disease complexes would impact disease management and plant breeding for resistance. To test those claims, we subjected passion fruit plants to single or concomitant parasitism by Meloidogyne javanica or M. incognita and Fusarium nirenbergiae or Neocosmospora sp. under controlled conditions. Non-inoculated plants served as control for the assays. The severity of shoot symptoms and variables related to plant growth, the extent of fungal lesions, and nematode reproduction were assessed to characterize the interactions. The shoot symptoms and effect on plant growth induced by the pathogens varied, but no synergy between the pathogens was observed. Moreover, the volume of tissue lesioned by the fungi was not affected by co-parasitism of the nematodes. Conversely, plant resistance to the nematodes was not affected by co-parasitism of the fungi. The interactions M. incognita-F. nirenbergiae, M. incognita-Neocosmospora sp., M. javanica-F. nirenbergiae, and M. javanica-Neocosmospora sp. were not synergistic as previously claimed, but instead neutral.  相似文献   
49.
50.
Tobacco farmers are routinely exposed to complex mixtures of inorganic and organic chemicals present in tobacco leaves. In this study, we examined the genotoxicity of tobacco leaves in the snail Helix aspersa as a measure of the risk to human health. DNA damage was evaluated using the micronucleus test and the Comet assay and the concentration of cytochrome P450 enzymes was estimated. Two groups of snails were studied: one fed on tobacco leaves and one fed on lettuce (Lactuca sativa L) leaves (control group). All of the snails received leaves (tobacco and lettuce leaves were the only food provided) and water ad libitum. Hemolymph cells were collected after 0, 24, 48 and 72 h. The Comet assay and micronucleus test showed that exposure to tobacco leaves for different periods of time caused significant DNA damage. Inhibition of cytochrome P450 enzymes occurred only in the tobacco group. Chemical analysis indicated the presence of the alkaloid nicotine, coumarins, saponins, flavonoids and various metals. These results show that tobacco leaves are genotoxic in H. aspersa and inhibit cytochrome P450 activity, probably through the action of the complex chemical mixture present in the plant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号