首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7337篇
  免费   737篇
  国内免费   2篇
  8076篇
  2023年   49篇
  2022年   101篇
  2021年   243篇
  2020年   117篇
  2019年   175篇
  2018年   210篇
  2017年   160篇
  2016年   263篇
  2015年   469篇
  2014年   418篇
  2013年   470篇
  2012年   609篇
  2011年   575篇
  2010年   342篇
  2009年   256篇
  2008年   407篇
  2007年   397篇
  2006年   365篇
  2005年   342篇
  2004年   311篇
  2003年   288篇
  2002年   235篇
  2001年   72篇
  2000年   79篇
  1999年   98篇
  1998年   74篇
  1997年   43篇
  1996年   39篇
  1995年   33篇
  1994年   37篇
  1993年   23篇
  1992年   55篇
  1991年   41篇
  1990年   48篇
  1989年   41篇
  1988年   35篇
  1987年   37篇
  1986年   25篇
  1985年   33篇
  1984年   22篇
  1983年   17篇
  1982年   17篇
  1980年   24篇
  1979年   28篇
  1978年   25篇
  1977年   26篇
  1975年   16篇
  1974年   21篇
  1973年   16篇
  1967年   19篇
排序方式: 共有8076条查询结果,搜索用时 0 毫秒
61.
The heritable disorder ataxia telangiectasia (AT) is caused by mutations in the AT-mutated (ATM) gene with manifestations that include predisposition to lymphoproliferative cancers and hypersensitivity to ionizing radiation (IR). We investigated gene expression changes in response to IR in human lymphoblasts and fibroblasts from seven normal and seven AT-affected individuals. Both cell types displayed ATM-dependent gene expression changes after IR, with some responses shared and some responses varying with cell type and dose. Interestingly, after 5 Gy IR, lymphoblasts displayed ATM-independent responses not seen in the fibroblasts at this dose, which likely reflect signaling through ATM-related kinases, e.g., ATR, in the absence of ATM function.  相似文献   
62.
Intake rate, the rate in which herbivores can process their food, is presumed to be an important factor in habitat selection down to the scale of the foraging patch. Much attention has been given to the selection of swards of high nutritional quality, but much less has been given to the influences of sward structure on patch selection in small herbivores. In this study we tested the effects of sward density and height on the functional foraging response of barnacle geese, Branta leucopsis. The functional response curve for herbivores describes how intake rate is affected by food availability. We conducted feeding trials to determine intake rate and bite size of barnacle geese on experimentally manipulated swards. Results indicate that intake rate is mainly dependent on sward height and that there is a strong correlation between bite size and intake rate. Sward density does not influence the rate of food consumption; it is, however, a crucial parameter affecting potential total yield. We conclude that bite size is the crucial parameter influencing intake rate. Bite size is explained both by sward height and individual differences in bill morphology. Furthermore, intake rate seems to be dependent on the physical structure of the grass species consumed.  相似文献   
63.
Ultraviolet (UV) radiation from the sun is widely considered as a major cause of human skin photoaging and skin cancer. Granzyme B (GrB) and perforin (PFN) are two proteins contained in granules and implicated in one of the mechanisms by which cytotoxic lymphocytes and natural killer cells exert their cytotoxicity against virus-infected, alloreactive, or transformed cells. The distribution of GrB and PFN in the skin has received little attention. However, Berthou and co-workers (Berthou, C., Michel, L., Soulie, A., Jean-Louis, F., Flageul, B., Dubertret, L., Sigaux, F., Zhang, Y., and Sasportes, M. (1997) J. Immunol. 159, 5293-5300) described that, whereas freshly isolated epidermal cells did not express GrB or PFN, keratinocyte growth to confluence was associated with GrB and PFN mRNA and protein synthesis. In this work, we have investigated the possible role of UV-B on GrB and PFN expression in keratinocytes. We found that UV-B induces GrB and PFN expression in these cells through redox-, epidermal growth factor receptor-, and mitogen-activated protein kinase-dependent signaling. Furthermore, under UV irradiation, keratinocytes acquire a significant cytotoxicity, which is GrB and PFN dependent, toward a variety of cellular targets including transformed T-lymphocytes, melanocytes, and keratinocytes. This phenomenon may have important functional consequences in the regulation of skin inflammatory response and in the emergence of cancer skin.  相似文献   
64.
Phosphorylated p40PHOX as a negative regulator of NADPH oxidase   总被引:5,自引:0,他引:5  
The leukocyte NADPH oxidase catalyzes the production of O(2)(-) from oxygen at the expense of NADPH. Activation of the enzyme requires interaction of the cytosolic factors p47(PHOX), p67(PHOX), and Rac2 with the membrane-associated cytochrome b(558). Activation of the oxidase in a semirecombinant cell-free system in the absence of an amphiphilic activator can be achieved by phosphorylation of the cytosolic factor p47(PHOX) by protein kinase C. Another cytosolic factor, p40(PHOX), was recently shown to be phosphorylated on serine and threonine residues upon activation of NADPH oxidase, but both stimulatory and inhibitory roles were reported. In the present study, we demonstrate that the addition of phosphorylated p40(PHOX) to the cell-free system inhibits NADPH oxidase activated by protein kinase C-phosphorylated p47(PHOX), an effect not observed with the unphosphorylated p40(PHOX). Moreover phosphorylated p40(PHOX) inhibits the oxidase if added before or after full activation of the enzyme. Direct mutagenesis of protein kinase C consensus sites enables us to conclude that phosphorylation of threonine 154 is required for the inhibitory effect of p40(PHOX) to occur. Although the phosphorylated mutants and nonphosphorylated mutants are still able to interact with both p47(PHOX) and p67(PHOX) in pull-down assays, their proteolysis pattern upon thrombin treatment suggests a difference in conformation between the phosphorylated and nonphosphorylated mutants. We postulate that phosphorylation of p40(PHOX) on threonine 154 leads to an inhibitory conformation that shifts the balance toward an inhibitory role and blocks oxidase activation.  相似文献   
65.
Multiple system atrophy (MSA) is a fatal rapidly progressive α-synucleinopathy, characterized by α-synuclein accumulation in oligodendrocytes. It is accepted that the pathological α-synuclein accumulation in the brain of MSA patients plays a leading role in the disease process, but little is known about the events in the early stages of the disease. In this study we aimed to define potential roles of the miRNA-mRNA regulatory network in the early pre-motor stages of the disease, i.e., downstream of α-synuclein accumulation in oligodendroglia, as assessed in a transgenic mouse model of MSA. We investigated the expression patterns of miRNAs and their mRNA targets in substantia nigra (SN) and striatum, two brain regions that undergo neurodegeneration at a later stage in the MSA model, by microarray and RNA-seq analysis, respectively. Analysis was performed at a time point when α-synuclein accumulation was already present in oligodendrocytes at neuropathological examination, but no neuronal loss nor deficits of motor function had yet occurred. Our data provide a first evidence for the leading role of gene dysregulation associated with deficits in immune and inflammatory responses in the very early, non-symptomatic disease stages of MSA. While dysfunctional homeostasis and oxidative stress were prominent in SN in the early stages of MSA, in striatum differential gene expression in the non-symptomatic phase was linked to oligodendroglial dysfunction, disturbed protein handling, lipid metabolism, transmembrane transport and altered cell death control, respectively. A large number of putative miRNA-mRNAs interaction partners were identified in relation to the control of these processes in the MSA model. Our results support the role of early changes in the miRNA-mRNA regulatory network in the pathogenesis of MSA preceding the clinical onset of the disease. The findings thus contribute to understanding the disease process and are likely to pave the way towards identifying disease biomarkers for early diagnosis of MSA.  相似文献   
66.
67.
68.
VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia   总被引:39,自引:0,他引:39  
Vascular endothelial growth factor (VEGF-A) is a major regulator of blood vessel formation and function. It controls several processes in endothelial cells, such as proliferation, survival, and migration, but it is not known how these are coordinately regulated to result in more complex morphogenetic events, such as tubular sprouting, fusion, and network formation. We show here that VEGF-A controls angiogenic sprouting in the early postnatal retina by guiding filopodial extension from specialized endothelial cells situated at the tips of the vascular sprouts. The tip cells respond to VEGF-A only by guided migration; the proliferative response to VEGF-A occurs in the sprout stalks. These two cellular responses are both mediated by agonistic activity of VEGF-A on VEGF receptor 2. Whereas tip cell migration depends on a gradient of VEGF-A, proliferation is regulated by its concentration. Thus, vessel patterning during retinal angiogenesis depends on the balance between two different qualities of the extracellular VEGF-A distribution, which regulate distinct cellular responses in defined populations of endothelial cells.  相似文献   
69.
The major inputs of fixed N into the global nitrogen cycle are assessed and compared as indicators of both the need for and the likely basis of new, complementary, man-made N2-fixing processes. The development, since 1964, of the purely chemical, highly reactive systems for the reduction of N2, including those driven electro- and photochemically, is traced, along with the parallel efforts to synthesize metal-N2 complexes (the first step in any likely fixation process) and subsequently protonate them to produce hydrazine or ammonia. These experimental approaches are convergent. Successful cycling or catalysing of some of these N2-binding systems has been achieved. The advantages and limitations of the more successful systems are noted. Approaches to this problem via direct modelling of the nitrogenase active site are outlined, as is the one successful use of such complexes in achieving N2 reduction. This wealth of effort on the reductive approaches contrasts vividly with the almost complete absence of research on N2 oxidation. Currently, only a re-evaluation of the arc discharge process is continuing. Finally, the author's studies of the extruded molybdenum-containing prosthetic group of nitrogenase, the enzymic N2-reducing site, are described in relation to future N2-fixing systems.  相似文献   
70.
Hereditary cerebral hemorrhage with amyloidosis-Dutch type is a disorder associated with a missense mutation (E693Q) in the β-amyloid (Aβ)-coding region of the amyloid precursor protein (APP). This familial disease is characterized by cognitive deficits secondary to intracerebral hemorrhage and, in some cases, progressive Alzheimer's disease (AD)-like dementia. Although this mutation was the first ever reported in the human APP gene, little is known about the molecular mechanisms underlying the direct toxic effects of this mutated Aβ on central neurons. In the present study, we assessed the role of calpain-mediated toxicity in such effects using an AD primary culture model system. Our results showed that Dutch mutant Aβ (E22Q) induced calpain-mediated cleavage of dynamin 1 and a significant decrease in synaptic contacts in mature hippocampal cultures. These synaptic deficits were similar to those induced by wild-type (WT) Aβ. In contrast, calpain-mediated tau cleavage leading to the generation of a 17-kDa neurotoxic fragment, as well as neuronal death, were significantly reduced in E22Q Aβ-treated neurons when compared with WT Aβ-treated ones. This complex regulation of the calpain-mediated toxicity pathway by E22Q Aβ could have some bearing in the pathobiology of this familial AD form.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号