首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5893篇
  免费   535篇
  国内免费   4篇
  6432篇
  2024年   5篇
  2023年   53篇
  2022年   103篇
  2021年   230篇
  2020年   115篇
  2019年   173篇
  2018年   213篇
  2017年   162篇
  2016年   252篇
  2015年   431篇
  2014年   389篇
  2013年   412篇
  2012年   553篇
  2011年   524篇
  2010年   319篇
  2009年   230篇
  2008年   353篇
  2007年   350篇
  2006年   313篇
  2005年   268篇
  2004年   233篇
  2003年   231篇
  2002年   193篇
  2001年   35篇
  2000年   29篇
  1999年   44篇
  1998年   47篇
  1997年   22篇
  1996年   14篇
  1995年   16篇
  1994年   13篇
  1993年   8篇
  1992年   8篇
  1991年   6篇
  1990年   9篇
  1988年   5篇
  1986年   6篇
  1985年   3篇
  1982年   3篇
  1981年   6篇
  1980年   6篇
  1977年   4篇
  1973年   5篇
  1970年   2篇
  1969年   2篇
  1968年   2篇
  1967年   4篇
  1963年   2篇
  1962年   2篇
  1957年   2篇
排序方式: 共有6432条查询结果,搜索用时 0 毫秒
21.
Hereditary cerebral hemorrhage with amyloidosis-Dutch type is a disorder associated with a missense mutation (E693Q) in the β-amyloid (Aβ)-coding region of the amyloid precursor protein (APP). This familial disease is characterized by cognitive deficits secondary to intracerebral hemorrhage and, in some cases, progressive Alzheimer's disease (AD)-like dementia. Although this mutation was the first ever reported in the human APP gene, little is known about the molecular mechanisms underlying the direct toxic effects of this mutated Aβ on central neurons. In the present study, we assessed the role of calpain-mediated toxicity in such effects using an AD primary culture model system. Our results showed that Dutch mutant Aβ (E22Q) induced calpain-mediated cleavage of dynamin 1 and a significant decrease in synaptic contacts in mature hippocampal cultures. These synaptic deficits were similar to those induced by wild-type (WT) Aβ. In contrast, calpain-mediated tau cleavage leading to the generation of a 17-kDa neurotoxic fragment, as well as neuronal death, were significantly reduced in E22Q Aβ-treated neurons when compared with WT Aβ-treated ones. This complex regulation of the calpain-mediated toxicity pathway by E22Q Aβ could have some bearing in the pathobiology of this familial AD form.  相似文献   
22.
VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia   总被引:39,自引:0,他引:39  
Vascular endothelial growth factor (VEGF-A) is a major regulator of blood vessel formation and function. It controls several processes in endothelial cells, such as proliferation, survival, and migration, but it is not known how these are coordinately regulated to result in more complex morphogenetic events, such as tubular sprouting, fusion, and network formation. We show here that VEGF-A controls angiogenic sprouting in the early postnatal retina by guiding filopodial extension from specialized endothelial cells situated at the tips of the vascular sprouts. The tip cells respond to VEGF-A only by guided migration; the proliferative response to VEGF-A occurs in the sprout stalks. These two cellular responses are both mediated by agonistic activity of VEGF-A on VEGF receptor 2. Whereas tip cell migration depends on a gradient of VEGF-A, proliferation is regulated by its concentration. Thus, vessel patterning during retinal angiogenesis depends on the balance between two different qualities of the extracellular VEGF-A distribution, which regulate distinct cellular responses in defined populations of endothelial cells.  相似文献   
23.
Phosphorylated p40PHOX as a negative regulator of NADPH oxidase   总被引:5,自引:0,他引:5  
The leukocyte NADPH oxidase catalyzes the production of O(2)(-) from oxygen at the expense of NADPH. Activation of the enzyme requires interaction of the cytosolic factors p47(PHOX), p67(PHOX), and Rac2 with the membrane-associated cytochrome b(558). Activation of the oxidase in a semirecombinant cell-free system in the absence of an amphiphilic activator can be achieved by phosphorylation of the cytosolic factor p47(PHOX) by protein kinase C. Another cytosolic factor, p40(PHOX), was recently shown to be phosphorylated on serine and threonine residues upon activation of NADPH oxidase, but both stimulatory and inhibitory roles were reported. In the present study, we demonstrate that the addition of phosphorylated p40(PHOX) to the cell-free system inhibits NADPH oxidase activated by protein kinase C-phosphorylated p47(PHOX), an effect not observed with the unphosphorylated p40(PHOX). Moreover phosphorylated p40(PHOX) inhibits the oxidase if added before or after full activation of the enzyme. Direct mutagenesis of protein kinase C consensus sites enables us to conclude that phosphorylation of threonine 154 is required for the inhibitory effect of p40(PHOX) to occur. Although the phosphorylated mutants and nonphosphorylated mutants are still able to interact with both p47(PHOX) and p67(PHOX) in pull-down assays, their proteolysis pattern upon thrombin treatment suggests a difference in conformation between the phosphorylated and nonphosphorylated mutants. We postulate that phosphorylation of p40(PHOX) on threonine 154 leads to an inhibitory conformation that shifts the balance toward an inhibitory role and blocks oxidase activation.  相似文献   
24.
25.
Multiple system atrophy (MSA) is a fatal rapidly progressive α-synucleinopathy, characterized by α-synuclein accumulation in oligodendrocytes. It is accepted that the pathological α-synuclein accumulation in the brain of MSA patients plays a leading role in the disease process, but little is known about the events in the early stages of the disease. In this study we aimed to define potential roles of the miRNA-mRNA regulatory network in the early pre-motor stages of the disease, i.e., downstream of α-synuclein accumulation in oligodendroglia, as assessed in a transgenic mouse model of MSA. We investigated the expression patterns of miRNAs and their mRNA targets in substantia nigra (SN) and striatum, two brain regions that undergo neurodegeneration at a later stage in the MSA model, by microarray and RNA-seq analysis, respectively. Analysis was performed at a time point when α-synuclein accumulation was already present in oligodendrocytes at neuropathological examination, but no neuronal loss nor deficits of motor function had yet occurred. Our data provide a first evidence for the leading role of gene dysregulation associated with deficits in immune and inflammatory responses in the very early, non-symptomatic disease stages of MSA. While dysfunctional homeostasis and oxidative stress were prominent in SN in the early stages of MSA, in striatum differential gene expression in the non-symptomatic phase was linked to oligodendroglial dysfunction, disturbed protein handling, lipid metabolism, transmembrane transport and altered cell death control, respectively. A large number of putative miRNA-mRNAs interaction partners were identified in relation to the control of these processes in the MSA model. Our results support the role of early changes in the miRNA-mRNA regulatory network in the pathogenesis of MSA preceding the clinical onset of the disease. The findings thus contribute to understanding the disease process and are likely to pave the way towards identifying disease biomarkers for early diagnosis of MSA.  相似文献   
26.
Maximum photosynthetic capacity indicates that the Antarctic psychrophile Chlamydomonas raudensis H. Ettl UWO 241 is photosynthetically adapted to low temperature. Despite this finding, C. raudensis UWO 241 exhibited greater sensitivity to low‐temperature photoinhibition of PSII than the mesophile Chlamydomonas reinhardtii P. A. Dang. However, in contrast with results for C. reinhardtii, the quantum requirement to induce 50% photoinhibition of PSII in C. raudensis UWO 241 (50 μmol photons) was comparable at either 8°C or 29°C. To our knowledge, this is the first report of a photoautotroph whose susceptibility to photoinhibition is temperature independent. In contrast, the capacity of the psychrophile to recover from photoinhibition of PSII was sensitive to temperature and inhibited at 29°C. The maximum rate of recovery from photoinhibition of the psychrophile at 8°C was comparable to the maximum rate of recovery of the mesophile at 29°C. We provide evidence that photoinhibition in C. raudensis UWO 241 is chronic rather than dynamic. The photoinhibition‐induced decrease in the D1 content in C. raudensis recovered within 30 min at 8°C. Both the recovery of the D1 content as well as the initial fast phase of the recovery of Fv/Fm at 8°C were inhibited by lincomycin, a chloroplast protein synthesis inhibitor. We conclude that the susceptibility of C. raudensis UWO 241 to low‐temperature photoinhibition reflects its adaptation to low growth irradiance, whereas the unusually rapid rate of recovery at low temperature exhibited by this psychrophile is due to a novel D1 repair cycle that is adapted to and is maximally operative at low temperature.  相似文献   
27.
Ultraviolet (UV) radiation from the sun is widely considered as a major cause of human skin photoaging and skin cancer. Granzyme B (GrB) and perforin (PFN) are two proteins contained in granules and implicated in one of the mechanisms by which cytotoxic lymphocytes and natural killer cells exert their cytotoxicity against virus-infected, alloreactive, or transformed cells. The distribution of GrB and PFN in the skin has received little attention. However, Berthou and co-workers (Berthou, C., Michel, L., Soulie, A., Jean-Louis, F., Flageul, B., Dubertret, L., Sigaux, F., Zhang, Y., and Sasportes, M. (1997) J. Immunol. 159, 5293-5300) described that, whereas freshly isolated epidermal cells did not express GrB or PFN, keratinocyte growth to confluence was associated with GrB and PFN mRNA and protein synthesis. In this work, we have investigated the possible role of UV-B on GrB and PFN expression in keratinocytes. We found that UV-B induces GrB and PFN expression in these cells through redox-, epidermal growth factor receptor-, and mitogen-activated protein kinase-dependent signaling. Furthermore, under UV irradiation, keratinocytes acquire a significant cytotoxicity, which is GrB and PFN dependent, toward a variety of cellular targets including transformed T-lymphocytes, melanocytes, and keratinocytes. This phenomenon may have important functional consequences in the regulation of skin inflammatory response and in the emergence of cancer skin.  相似文献   
28.
29.
30.
The SARS‐CoV‐2 infection cycle is a multistage process that relies on functional interactions between the host and the pathogen. Here, we repurposed antiviral drugs against both viral and host enzymes to pharmaceutically block methylation of the viral RNA 2''‐O‐ribose cap needed for viral immune escape. We find that the host cap 2''‐O‐ribose methyltransferase MTr1 can compensate for loss of viral NSP16 methyltransferase in facilitating virus replication. Concomitant inhibition of MTr1 and NSP16 efficiently suppresses SARS‐CoV‐2 replication. Using in silico target‐based drug screening, we identify a bispecific MTr1/NSP16 inhibitor with anti‐SARS‐CoV‐2 activity in vitro and in vivo but with unfavorable side effects. We further show antiviral activity of inhibitors that target independent stages of the host SAM cycle providing the methyltransferase co‐substrate. In particular, the adenosylhomocysteinase (AHCY) inhibitor DZNep is antiviral in in vitro, in ex vivo, and in a mouse infection model and synergizes with existing COVID‐19 treatments. Moreover, DZNep exhibits a strong immunomodulatory effect curbing infection‐induced hyperinflammation and reduces lung fibrosis markers ex vivo. Thus, multispecific and metabolic MTase inhibitors constitute yet unexplored treatment options against COVID‐19.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号