首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5593篇
  免费   513篇
  国内免费   2篇
  2023年   39篇
  2022年   84篇
  2021年   213篇
  2020年   105篇
  2019年   157篇
  2018年   194篇
  2017年   147篇
  2016年   231篇
  2015年   411篇
  2014年   364篇
  2013年   389篇
  2012年   527篇
  2011年   492篇
  2010年   296篇
  2009年   211篇
  2008年   332篇
  2007年   332篇
  2006年   294篇
  2005年   264篇
  2004年   235篇
  2003年   227篇
  2002年   190篇
  2001年   33篇
  2000年   34篇
  1999年   43篇
  1998年   48篇
  1997年   22篇
  1996年   16篇
  1995年   18篇
  1994年   14篇
  1993年   9篇
  1992年   12篇
  1991年   9篇
  1990年   9篇
  1988年   6篇
  1986年   6篇
  1985年   4篇
  1983年   5篇
  1982年   4篇
  1981年   6篇
  1980年   5篇
  1978年   6篇
  1977年   6篇
  1975年   3篇
  1973年   6篇
  1972年   4篇
  1971年   4篇
  1970年   3篇
  1967年   6篇
  1966年   4篇
排序方式: 共有6108条查询结果,搜索用时 500 毫秒
991.

Background

Osteoblasts are bone forming cells that play an essential role in osteogenesis. The elucidation of the mechanisms that control osteoblast number is of major interest for the treatment of skeletal disorders characterized by abnormal bone formation. Canonical Wnt signalling plays an important role in the control of osteoblast proliferation, differentiation and survival. Recent studies indicate that the cell-cell adhesion molecule N-cadherin interacts with the Wnt co-receptors LRP5/6 to regulate osteoblast differentiation and bone accrual. The role of N-cadherin in the control of osteoblast proliferation and survival remains unknown.

Methods and Principal Findings

Using murine MC3T3-E1 osteoblastic cells and N-cadherin transgenic mice, we demonstrate that N-cadherin overexpression inhibits cell proliferation in vitro and in vivo. The negative effect of N-cadherin on cell proliferation results from decreased Wnt, ERK and PI3K/Akt signalling and is restored by N-cadherin neutralizing antibody that antagonizes N-cadherin-LRP5 interaction. Inhibition of Wnt signalling using DKK1 or Sfrp1 abolishes the ability of N-cadherin blockade to restore ERK and PI3K signalling and cell proliferation, indicating that the altered cell growth in N-cadherin overexpressing cells is in part secondary to alterations in Wnt signalling. Consistently, we found that N-cadherin overexpression inhibits the expression of Wnt3a ligand and its downstream targets c-myc and cyclin D1, an effect that is partially reversed by N-cadherin blockade. We also show that N-cadherin overexpression decreases osteoblast survival in vitro and in vivo. This negative effect on cell survival results from inhibition of PI3K/Akt signalling and increased Bax/Bcl-2, a mechanism that is rescued by Wnt3a.

Conclusion

The data show that N-cadherin negatively controls osteoblast proliferation and survival via inhibition of autocrine/paracrine Wnt3a ligand expression and attenuation of Wnt, ERK and PI3K/Akt signalling, which provides novel mechanisms by which N-cadherin regulates osteoblast number.  相似文献   
992.
Dravet syndrome (DS) is a genetically determined epileptic encephalopathy mainly caused by de novo mutations in the SCN1A gene. Since 2003, we have performed molecular analyses in a large series of patients with DS, 27% of whom were negative for mutations or rearrangements in SCN1A. In order to identify new genes responsible for the disorder in the SCN1A-negative patients, 41 probands were screened for micro-rearrangements with Illumina high-density SNP microarrays. A hemizygous deletion on chromosome Xq22.1, encompassing the PCDH19 gene, was found in one male patient. To confirm that PCDH19 is responsible for a Dravet-like syndrome, we sequenced its coding region in 73 additional SCN1A-negative patients. Nine different point mutations (four missense and five truncating mutations) were identified in 11 unrelated female patients. In addition, we demonstrated that the fibroblasts of our male patient were mosaic for the PCDH19 deletion. Patients with PCDH19 and SCN1A mutations had very similar clinical features including the association of early febrile and afebrile seizures, seizures occurring in clusters, developmental and language delays, behavioural disturbances, and cognitive regression. There were, however, slight but constant differences in the evolution of the patients, including fewer polymorphic seizures (in particular rare myoclonic jerks and atypical absences) in those with PCDH19 mutations. These results suggest that PCDH19 plays a major role in epileptic encephalopathies, with a clinical spectrum overlapping that of DS. This disorder mainly affects females. The identification of an affected mosaic male strongly supports the hypothesis that cellular interference is the pathogenic mechanism.  相似文献   
993.
Infection with Helicobacter pylori is responsible for gastritis and gastroduodenal ulcers but is also a high risk factor for the development of gastric adenocarcinoma and lymphoma. The most pathogenic H. pylori strains (i.e., the so-called type I strains) associate the CagA virulence protein with an active VacA cytotoxin but the rationale for this association is unknown. CagA, directly injected by the bacterium into colonized epithelium via a type IV secretion system, leads to cellular morphological, anti-apoptotic and proinflammatory effects responsible in the long-term (years or decades) for ulcer and cancer. VacA, via pinocytosis and intracellular trafficking, induces epithelial cell apoptosis and vacuolation. Using human gastric epithelial cells in culture transfected with cDNA encoding for either the wild-type 38 kDa C-terminal signaling domain of CagA or its non-tyrosine-phosphorylatable mutant form, we found that, depending on tyrosine-phosphorylation by host kinases, CagA inhibited VacA-induced apoptosis by two complementary mechanisms. Tyrosine-phosphorylated CagA prevented pinocytosed VacA to reach its target intracellular compartments. Unphosphorylated CagA triggered an anti-apoptotic activity blocking VacA-induced apoptosis at the mitochondrial level without affecting the intracellular trafficking of the toxin. Assaying the level of apoptosis of gastric epithelial cells infected with wild-type CagA+/VacA+ H. pylori or isogenic mutants lacking of either CagA or VacA, we confirmed the results obtained in cells transfected with the CagA C-ter constructions showing that CagA antagonizes VacA-induced apoptosis. VacA toxin plays a role during H. pylori stomach colonization. However, once bacteria have colonized the gastric niche, the apoptotic action of VacA might be detrimental for the survival of H. pylori adherent to the mucosa. CagA association with VacA is thus a novel, highly ingenious microbial strategy to locally protect its ecological niche against a bacterial virulence factor, with however detrimental consequences for the human host.  相似文献   
994.
995.
Gene amplification, a key mechanism for oncogene activation and drug resistance in tumour cells, involves the generation and joining of DNA double-strand breaks. Amplified DNA can be carried either on intra-chromosomal arrays or on extra-chromosomal elements (double minutes). We previously showed that, in rodent cells deficient in DNA-PKcs, intra-chromosomal amplification is significantly enhanced. In the present work, we studied gene amplification in human HeLa cell lines in which the expression of the DNA-PKcs gene was constitutively inhibited by shRNAs. These cell lines showed an increased sensitivity to ionizing radiations, an enhanced frequency of chromosomal aberrations and an increased rate of occurrence of methotrexate resistant colonies compared to the control cell lines (6-18 times). The main mechanism of resistance to methotrexate was extra-chromosomal amplification of the dihydrofolate reductase gene. These results indicate that, in human cells, inhibition of DNA-PKcs gene expression favours gene amplification occurring via the production of double minutes. In addition, they show that cell lines constitutively expressing shRNAs are good model systems to study the role of specific functions in gene amplification.  相似文献   
996.

Background

Multiple system atrophy (MSA) is a progressive neurodegenerative disorder characterized by parkinsonism, cerebellar ataxia and autonomic dysfunction. Pathogenic mechanisms remain obscure but the neuropathological hallmark is the presence of α-synuclein-immunoreactive glial cytoplasmic inclusions. Genetic variants of the α-synuclein gene, SNCA, are thus strong candidates for genetic association with MSA. One follow-up to a genome-wide association of Parkinson''s disease has identified association of a SNP in SNCA with MSA.

Methodology/Findings

We evaluated 32 SNPs in the SNCA gene in a European population of 239 cases and 617 controls recruited as part of the Neuroprotection and Natural History in Parkinson Plus Syndromes (NNIPPS) study. We used 161 independently collected samples for replication. Two SNCA SNPs showed association with MSA: rs3822086 (P = 0.0044), and rs3775444 (P = 0.012), although only the first survived correction for multiple testing. In the MSA-C subgroup the association strengthened despite more than halving the number of cases: rs3822086 P = 0.0024, OR 2.153, (95% CI 1.3–3.6); rs3775444 P = 0.0017, OR 4.386 (95% CI 1.6–11.7). A 7-SNP haplotype incorporating three SNPs either side of rs3822086 strengthened the association with MSA-C further (best haplotype, P = 8.7×10−4). The association with rs3822086 was replicated in the independent samples (P = 0.035).

Conclusions/Significance

We report a genetic association between MSA and α-synuclein which has replicated in independent samples. The strongest association is with the cerebellar subtype of MSA.

Trial Registration

ClinicalTrials.gov NCT00211224. [NCT00211224]  相似文献   
997.

Background

Triatomines are vectors of Trypanosoma cruzi, the etiological agent of Chagas disease in Latin America. The most effective vector, Triatoma infestans, has been controlled successfully in much of Latin America using insecticide spraying. Though rarely undertaken, surveillance programs are necessary in order to identify new infestations and estimate the intensity of triatomine bug infestations in domestic and peridomestic habitats. Since hosts exposed to triatomines develop immune responses to salivary antigens, these responses can be evaluated for their usefulness as epidemiological markers to detect infestations of T. infestans.

Methodology/Principal Findings

T. infestans salivary proteins were separated by 2D-gel electrophoresis and tested for their immunogenicity by Western blotting using sera from chickens and guinea pigs experimentally exposed to T. infestans. From five highly immunogenic protein spots, eight salivary proteins were identified by nano liquid chromatography-electrospray ionization-tandem mass spectrometry (nanoLC-ESI-MS/MS) and comparison to the protein sequences of the National Center for Biotechnology Information (NCBI) database and expressed sequence tags of a unidirectionally cloned salivary gland cDNA library from T. infestans combined with the NCBI yeast protein sub-database. The 14.6 kDa salivary protein [gi|149689094] was produced as recombinant protein (rTiSP14.6) in a mammalian cell expression system and recognized by all animal sera. The specificity of rTiSP14.6 was confirmed by the lack of reactivity to anti-mosquito and anti-sand fly saliva antibodies. However, rTiSP14.6 was recognized by sera from chickens exposed to four other triatomine species, Triatoma brasiliensis, T. sordida, Rhodnius prolixus, and Panstrongylus megistus and by sera of chickens from an endemic area of T. infestans and Chagas disease in Bolivia.

Conclusions/Significance

The recombinant rTiSP14.6 is a suitable and promising epidemiological marker for detecting the presence of small numbers of different species of triatomines and could be developed for use as a new tool in surveillance programs, especially to corroborate vector elimination in Chagas disease vector control campaigns.  相似文献   
998.
Infection of Dictyostelium discoideum with Legionella pneumophila resulted in a large number of differentially regulated genes among them three core autophagy genes, ATG8, ATG9 and ATG16. Macroautophagy contributes to many physiological and pathological processes and might also constitute an important mechanism in cell‐autonomous immunity. For further studies we selected the highly conserved ATG9. In colocalization studies with GFP‐tagged ATG9 and different organelle marker proteins we neither observed colocalization with mitochondria, the ER nor lysosomes. However, there was partial colocalization with the Golgi apparatus and many ATG9‐GFP‐containing vesicles localized along microtubules and accumulated around the microtubule organizing centre. ATG9‐deficient cells had pleiotropic defects. In addition to growth defects they displayed severe developmental defects, consistent with the known role of autophagy in Dictyostelium development. Unexpectedly, the ATG9 mutant also had a strong phagocytosis defect that was particularly apparent when infecting the cells with L. pneumophila. However, those Legionellae that entered the host could multiply better in mutant than in wild‐type cells, because of a less efficient clearance in the early and a more efficient replication in the late phase of infection. We conclude that ATG9 and hence macroautophagy has a protective role during pathogen infection.  相似文献   
999.
The kink turn (K-turn) is an RNA structural motif found in many biologically significant RNAs. While most examples of the K-turn have a similar fold, the crystal structure of the Azoarcus group I intron revealed a novel RNA conformation, a reverse kink turn bent in the direction opposite that of a consensus K-turn. The reverse K-turn is bent toward the major grooves rather than the minor grooves of the flanking helices, yet the sequence differs from the K-turn consensus by only a single nucleotide. Here we demonstrate that the reverse bend direction is not solely defined by internal sequence elements, but is instead affected by structural elements external to the K-turn. It bends toward the major groove under the direction of a tetraloop–tetraloop receptor. The ability of one sequence to form two distinct structures demonstrates the inherent plasticity of the K-turn sequence. Such plasticity suggests that the K-turn is not a primary element in RNA folding, but instead is shaped by other structural elements within the RNA or ribonucleoprotein assembly.  相似文献   
1000.
The function of protein phosphatases with EF-hand domains (PPEF) in mammals is not known. Large-scale expression profiling experiments suggest that PPEF expression may correlate with stress protective responses, cell survival, growth, proliferation, or neoplastic transformation. Apoptosis signal regulating kinase-1 (ASK1) is a MAP kinase kinase kinase implicated in cancer, cardiovascular and neurodegenerative diseases. ASK1 is activated by oxidative stress and induces pro-apoptotic or inflammatory signalling, largely via sustained activation of MAP kinases p38 and/or JNK. We identify human PPEF2 as a novel interacting partner and a negative regulator of ASK1. In COS-7 or HEK 293A cells treated with H2O2, expression of PPEF2 abrogated sustained activation of p38 and one of the JNK p46 isoforms, and prevented ASK1-dependent caspase-3 cleavage and activation. PPEF2 efficiently suppressed H2O2-induced activation of ASK1. Overexpessed as well as endogenous ASK1 co-immunoprecipitated with PPEF2. PPEF2 was considerably more potent both as a suppressor of ASK1 activation and as its interacting partner as compared to protein phosphatase 5 (PP5), a well-known negative regulator of ASK1. PPEF2 was found to form complexes with endogenous Hsp70 and to a lesser extent Hsp90, which are also known interacting partners of PP5. These data identify, for the first time, a possible downstream signalling partner of a mammalian PPEF phosphatase, and suggest that, despite structural divergence, PPEF and PP5 phosphatases may share common interacting partners and functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号