首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5593篇
  免费   513篇
  国内免费   2篇
  2023年   39篇
  2022年   84篇
  2021年   213篇
  2020年   105篇
  2019年   157篇
  2018年   194篇
  2017年   147篇
  2016年   231篇
  2015年   411篇
  2014年   364篇
  2013年   389篇
  2012年   527篇
  2011年   492篇
  2010年   296篇
  2009年   211篇
  2008年   332篇
  2007年   332篇
  2006年   294篇
  2005年   264篇
  2004年   235篇
  2003年   227篇
  2002年   190篇
  2001年   33篇
  2000年   34篇
  1999年   43篇
  1998年   48篇
  1997年   22篇
  1996年   16篇
  1995年   18篇
  1994年   14篇
  1993年   9篇
  1992年   12篇
  1991年   9篇
  1990年   9篇
  1988年   6篇
  1986年   6篇
  1985年   4篇
  1983年   5篇
  1982年   4篇
  1981年   6篇
  1980年   5篇
  1978年   6篇
  1977年   6篇
  1975年   3篇
  1973年   6篇
  1972年   4篇
  1971年   4篇
  1970年   3篇
  1967年   6篇
  1966年   4篇
排序方式: 共有6108条查询结果,搜索用时 62 毫秒
911.
Cell death plays a critical role in inflammatory responses. During pyroptosis, inflammatory caspases cleave Gasdermin D (GSDMD) to release an N-terminal fragment that generates plasma membrane pores that mediate cell lysis and IL-1 cytokine release. Terminal cell lysis and IL-1β release following caspase activation can be uncoupled in certain cell types or in response to particular stimuli, a state termed hyperactivation. However, the factors and mechanisms that regulate terminal cell lysis downstream of GSDMD cleavage remain poorly understood. In the course of studies to define regulation of pyroptosis during Yersinia infection, we identified a line of Card19-deficient mice (Card19lxcn) whose macrophages were protected from cell lysis and showed reduced apoptosis and pyroptosis, yet had wild-type levels of caspase activation, IL-1 secretion, and GSDMD cleavage. Unexpectedly, CARD19, a mitochondrial CARD-containing protein, was not directly responsible for this, as an independently-generated CRISPR/Cas9 Card19 knockout mouse line (Card19Null) showed no defect in macrophage cell lysis. Notably, Card19 is located on chromosome 13, immediately adjacent to Ninj1, which was recently found to regulate cell lysis downstream of GSDMD activation. RNA-seq and western blotting revealed that Card19lxcn BMDMs have significantly reduced NINJ1 expression, and reconstitution of Ninj1 in Card19lxcn immortalized BMDMs restored their ability to undergo cell lysis in response to caspase-dependent cell death stimuli. Card19lxcn mice exhibited increased susceptibility to Yersinia infection, whereas independently-generated Card19Null mice did not, demonstrating that cell lysis itself plays a key role in protection against bacterial infection, and that the increased infection susceptibility of Card19lxcn mice is attributable to loss of NINJ1. Our findings identify genetic targeting of Card19 being responsible for off-target effects on the adjacent gene Ninj1, disrupting the ability of macrophages to undergo plasma membrane rupture downstream of gasdermin cleavage and impacting host survival and bacterial control during Yersinia infection.  相似文献   
912.
Animal models are at the forefront of biomedical research for studies of viral transmission, vaccines, and pathogenesis, yet the need for an ideal large animal model for COVID-19 remains. We used a meta-analysis to evaluate published data relevant to this need. Our literature survey contained 22 studies with data relevant to the incidence of common COVID-19 symptoms in rhesus macaques (Macaca mulatta), cynomolgus macaques (Macaca fascicularis), African green monkeys (Chlorocebus aethiops), and ferrets (Mustela putorius furo). Rhesus macaques had leukocytosis on Day 1 after inoculation and pneumonia on Days 7 and 14 after inoculation in frequencies that were similar enough to humans to reject the null hypothesis of a Fisher exact test. However, the differences in overall presentation of disease were too different from that of humans to successfully identify any of these 4 species as an ideal large animal of COVID-19. The greatest limitation to the current study is a lack of standardization in experimentation and reporting. To expand our understanding of the pathology of COVID-19 and evaluate vaccine immunogenicity, we must extend the unprecedented collaboration that has arisen in the study of COVID-19 to include standardization of animal-based research in an effort to find the optimal animal model.

Human research of disease presents a number of ethical dilemmas, prompting scientists to use animal models in their research with the primary goal of enhancing the understanding of a human disease or phenomenon. Animal models have been instrumental to our understanding of pathologies, the assessment of novel vaccines, and the testing of acute therapies. Of the past 222 Nobel prizes awarded in the physiology and medicine categories since 1901, all but 36 have been a direct result of animal-based research.31Insects, nematodes, fish, amphibians, and numerous mammals have enabled some of the most important advances in physiology and medicine since their introduction in disease research. Through genetic modification, surgical adaptation, xenografts, chemical induction, and infection models, these animals have been used to model human phenomena.31 However, although particular animal species are often chosen based on their ability to meet specific criteria in line with the research question, their size remains an important factor.26,31Small animals are often preferred in laboratory settings for their ease of use, shorter life cycle, easier handling and care, and short gestation.5 Rodents are the most commonly used animal for the study of human diseases for these very reasons, although they frequently fail to fully mimic the clinical signs and significant pathologic hallmarks of human diseases.11,18 For this reason, some researchers use large animal models. Nonhuman primates (NHPs), in particular, have been extremely useful in reproducing the clinical signs of human diseases due to their close phylogenetic relationship to humans and resulting genetic, behavioral, and biochemical similarities.14On March 11, 2020, the World Health Organization declared a SARS-CoV-2 pandemic. SARS-CoV-2 is a novel coronavirus causing symptoms similar to, but distinct from, those found in individuals infected with SARS-CoV, the coronavirus that caused the 2003 SARS pandemic. As of September 10, 2021, this coronavirus has infected 219 million individuals with the COVID-19 disease.10 Although vaccines have been developed and approved in record time, we still need to better understand the pathogenesis of the disease and the long-term implications of infections. To do this, and to increase our understanding of the immunogenicity of current vaccines, finding an animal that replicates the manifestation of COVID-19 in humans is imperative.Much of the research on COVID-19 thus far has been aided by previous SARS research. In both SARS-CoV and SARS-CoV-2 studies, mice33,45 and hamsters19,34 were small animal models of choice. Large animals such as ferrets, cats, pigs, chickens, dogs, and nonhuman primates have also been tested for their reproducibility of COVID-19, with varying degrees of success.27,41,49 While a perfect animal model of this viral infection is unlikely, the need remains to identify at least one large animal species as a frontrunner in reproducibility of the human clinical signs and significant pathologies of SARS-CoV-2 infection.The need for a large animal model to study COVID-19 does not imply a replacement for murine models, but rather an adjunct. The closer phylogenetic relationship of humans to NHPs makes them excellent candidates for the study of this disease. Vaccine trials have already shown that the responses of NHPs are closer to those of humans than are those of mice.23 This difference may be due to species differences in IgG antibody and T helper type 1 cell responses that influence virus-immune system interactions, which make small animal models problematic for studying SARS-CoV-2 infection and vaccine performance in humans.15 NHPs have potential high value as a model due to their homology to the human angiotensin‐converting enzyme‐2, which is the SARS-CoV-2 binding site.23,28 After the outbreak, the World Health Organization (WHO) formed the WHO COVID-19 modelling ad-hoc expert grouping. The working group identified various NHP models, including rhesus macaques, cynomolgus macaques and African green monkeys, in addition to ferrets as being susceptible to SARS Co-V-2 isolates that would result in reproducible infection, with mild to moderate disease.52 Therefore, the present article is focused on summarizing the results of multiple studies on rhesus macaque, cynomolgus macaque, African green monkey, and ferret infection with SARS-CoV-2. To highlight the species that best replicate the human clinical and laboratory findings of COVID-19, we synthesized the results of 22 animal studies to provide a comprehensive analysis of what is known about their infections to date.  相似文献   
913.
914.
915.
916.
The cytoarchitectural simplicity of the cerebral cortex makes it an attractive system to study central nervous system (CNS) histogenesis—the process whereby diverse cells are generated in the right numbers at the appropriate place and time. Recently, multipotent stem cells have been implicated in this process, as progenitor cells for diverse types of cortical neurons and glia. Continuous analysis of stem cell clone development reveals stereotyped division patterns within their lineage trees, highly reminiscent of neural lineage trees in arthropods and Caenorhabditis elegans. Given that these division patterns play a critical part in generating diverse neural types in invertebrates, we speculate that they play a similar role in the cortex. Because stereotyped lineage trees can be observed from cells growing at clonal density, cell-intrinsic factors are likely to have a key role in stem cell behavior. Cortical stem cells also respond to environmental signals to alter the types of cells they generate, providing the means for feedback regulation on the germinal zone. Evidence is accumulating that cortical stem cells, influenced by intrinsic programs and environmental signals, actually change with development—for example, by reducing the number and types of neurons they produce. Age-related changes in the stem cell population may have a critical role in orchestrating development; whether these cells truly self-renew is a point of discussion. In summary, we propose that cortical stem cells are the focus of regulatory mechanisms central to the development of the cortical cytoarchitecture. © 1998 John Wiley & Sons, Inc. J Neurobiol 36: 162–174, 1998  相似文献   
917.
918.
Rapamycin (RAPA) strongly inhibits lymphocyte activation and proliferation, but does not affect most of the activation-related gene expression at the mRNA level. In order to understand the mechanism of action of RAPA and to gain further insights in lymphocyte signalling which is impaired by RAPA, we screened for RAPA-sensitive genes using differential hybridization. The expression of human aldolase A gene was found to be inducible during T and B cell activation, and the induction was repressed by RAPA at both the mRNA and enzymatic levels. The other two important immunosuppressants, cyclosporin A and FK506, also inhibited the mitogen-induced upregulation. However, none of these three drugs inhibited the constitutive expression. There was no fluctuation of aldolase A expression during the cell cycle, and RAPA failed to block the first cell cycle after synchronization in Jurkat cells. However, the second cycle was hampered by RAPA, and this was correlated with the inhibition of aldolase A expression during this later stage. Since aldolase A is a key enzyme in glycolysis and lymphocytes mainly depend on glycolysis for energy supply, the data from this study suggest that aldolase A might be one of the downstream targets of RAPA. The inhibition of the enzyme upregulation might deprive the cells of additional supply of energy, and prevent the cells from entering an optimal status for proliferation. © 1996 Wiley-Liss, Inc.  相似文献   
919.
Differential introgression of mitochondrial vs. nuclear DNA generates discordant patterns of geographic variation and can promote population divergence and speciation. We examined a potential case of mitochondrial introgression leading to two perpendicular axes of differentiation. The Eastern Yellow Robin Eopsaltria australis, a widespread Australian bird, shows a deep mitochondrial split that is perpendicular to north–south nuclear DNA and plumage colour differentiation. We propose a scenario to explain this pattern: (i) first, both nuclear and mitochondrial genomes differentiated in concert during north–south population divergence; (ii) later, their histories disconnected after two mitochondrial introgression events resulting in a deep mitochondrial split perpendicular to the nuclear DNA structure. We explored this scenario by coalescent modelling of ten mitochondrial genes and 400 nuclear DNA loci. Initial mitochondrial and nuclear genome divergences were estimated to have occurred in the early Pleistocene, consistent with the proposed scenario. Subsequent climatic transitions may have driven later mitochondrial introgression. We consider neutral introgression unlikely and instead propose that the evidence is more consistent with adaptive mitochondrial introgression and selection against incompatible mitochondrial‐nuclear combinations. This likely generated an axis of coastal‐inland mitochondrial differentiation in the face of nuclear gene flow, perpendicular to the initial north–south axis of differentiation (reflected in genomewide nuclear DNA and colour variation).  相似文献   
920.
We synthesized a new family of six 4(3H)quinazolinimines based on the reaction between (E)-N-(2-cyanophenyl)benzimidoyl chloride and substituted anilines reaching the formation of their corresponding C2, N3-substituted quinazoliniminium chlorides. This method provides novel, direct and flexible access to diverse substituted 4(3H)quinazolinimines.New compounds obtained following the proposed synthesis were fully characterized and, including the thirteen 4(3H)quinazolinimines synthesized by this method and previously reported by us, were used to study its cytotoxic effect on neoplastic cell lines. The mechanism involved in cell toxicity was also studied. Results showed that these compounds were highly cytotoxic, in particular on Human Promyelocytic Leukemia cells (HL60) and Chronic Myelogenous Leukemia cells (K562) when compared with conventional antineoplastic drugs such as etoposide and cisplatin. The mechanism associated to cytotoxic effect was mainly apoptosis, which not was decreased by antioxidant addition, thereby suggesting that the compounds exert apoptotic death through a mechanism unrelated with oxidative stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号