首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5481篇
  免费   502篇
  国内免费   2篇
  5985篇
  2024年   5篇
  2023年   45篇
  2022年   92篇
  2021年   212篇
  2020年   103篇
  2019年   157篇
  2018年   192篇
  2017年   144篇
  2016年   229篇
  2015年   405篇
  2014年   359篇
  2013年   382篇
  2012年   523篇
  2011年   487篇
  2010年   293篇
  2009年   210篇
  2008年   328篇
  2007年   329篇
  2006年   293篇
  2005年   258篇
  2004年   226篇
  2003年   223篇
  2002年   184篇
  2001年   30篇
  2000年   26篇
  1999年   40篇
  1998年   46篇
  1997年   20篇
  1996年   13篇
  1995年   16篇
  1994年   13篇
  1993年   8篇
  1992年   8篇
  1991年   6篇
  1990年   9篇
  1988年   4篇
  1986年   5篇
  1985年   3篇
  1982年   3篇
  1981年   5篇
  1980年   5篇
  1977年   4篇
  1973年   5篇
  1970年   2篇
  1969年   2篇
  1968年   2篇
  1967年   4篇
  1963年   2篇
  1962年   2篇
  1957年   2篇
排序方式: 共有5985条查询结果,搜索用时 15 毫秒
101.
The Caenorhabditis elegans inner nuclear envelope protein matefin/SUN-1 plays a conserved, pivotal role in the process of genome haploidization. CHK-2-dependent phosphorylation of SUN-1 regulates homologous chromosome pairing and interhomolog recombination in Caenorhabditis elegans. Using time-lapse microscopy, we characterized the movement of matefin/SUN-1::GFP aggregates (the equivalent of chromosomal attachment plaques) and showed that the dynamics of matefin/SUN-1 aggregates remained unchanged throughout leptonene/zygotene, despite the progression of pairing. Movement of SUN-1 aggregates correlated with chromatin polarization. We also analyzed the requirements for the formation of movement-competent matefin/SUN-1 aggregates in the context of chromosome structure and found that chromosome axes were required to produce wild-type numbers of attachment plaques. Abrogation of synapsis led to a deceleration of SUN-1 aggregate movement. Analysis of matefin/SUN-1 in a double-strand break deficient mutant revealed that repair intermediates influenced matefin/SUN-1 aggregate dynamics. Investigation of movement in meiotic regulator mutants substantiated that proper orchestration of the meiotic program and effective repair of DNA double-strand breaks were necessary for the wild-type behavior of matefin/SUN-1 aggregates.  相似文献   
102.
103.
104.
105.
106.
Glutaminyl-tRNA synthetase from Deinococcus radiodurans possesses a C-terminal extension of 215 residues appending the anticodon-binding domain. This domain constitutes a paralog of the Yqey protein present in various organisms and part of it is present in the C-terminal end of the GatB subunit of GatCAB, a partner of the indirect pathway of Gln-tRNAGln formation. To analyze the peculiarities of the structure–function relationship of this GlnRS related to the Yqey domain, a structure of the protein was solved from crystals diffracting at 2.3Å and a docking model of the synthetase complexed to tRNAGln constructed. The comparison of the modeled complex with the structure of the E. coli complex reveals that all residues of E. coli GlnRS contacting tRNAGln are conserved in D. radiodurans GlnRS, leaving the functional role of the Yqey domain puzzling. Kinetic investigations and tRNA-binding experiments of full length and Yqey-truncated GlnRSs reveal that the Yqey domain is involved in tRNAGln recognition. They demonstrate that Yqey plays the role of an affinity-enhancer of GlnRS for tRNAGln acting only in cis. However, the presence of Yqey in free state in organisms lacking GlnRS, suggests that this domain may exert additional cellular functions.  相似文献   
107.
Mast cells are well known for their role in allergic and anaphylactic reactions, as well as their involvement in acquired and innate immunity. Increasing evidence now implicates mast cells in inflammatory diseases where they are activated by non-allergic triggers, such as neuropeptides and cytokines, often exerting synergistic effects as in the case of IL-33 and neurotensin. Mast cells can also release pro-inflammatory mediators selectively without degranulation. In particular, IL-1 induces selective release of IL-6, while corticotropin-releasing hormone secreted under stress induces the release of vascular endothelial growth factor. Many inflammatory diseases involve mast cells in cross-talk with T cells, such as atopic dermatitis, psoriasis and multiple sclerosis, which all worsen by stress. How mast cell differential responses are regulated is still unresolved. Preliminary evidence suggests that mitochondrial function and dynamics control mast cell degranulation, but not selective release. Recent findings also indicate that mast cells have immunomodulatory properties. Understanding selective release of mediators could explain how mast cells participate in numerous diverse biologic processes, and how they exert both immunostimulatory and immunosuppressive actions. Unraveling selective mast cell secretion could also help develop unique mast cell inhibitors with novel therapeutic applications. This article is part of a Special Issue entitled: Mast cells in inflammation.  相似文献   
108.
Maternal hormones can be transferred to offspring during prenatal development in response to the maternal social environment, and may adaptively alter offspring phenotype. For example, numerous avian studies show that aggressive competition with conspecifics tends to result in females allocating more testosterone to their egg yolks, and this may cause offspring to have more competitive phenotypes. However, deviations from this pattern of maternal testosterone allocation are found, largely in studies of colonial species, and have yet to be explained. Colonial species may have different life‐history constraints causing different yolk testosterone allocation strategies in response to conspecific competition, but few studies have experimentally tested whether colonial species do indeed differ from that of solitary species. To test this, we collected eggs from zebra finches Taeniopygia guttata, a colonial species, in the presence and absence of conspecific intrusions. Females did not alter the concentration of testosterone deposited in eggs laid during intrusions despite becoming more aggressive. These results suggest that maternal effects are not characterized by a uniform response to the social environment, but rather need to be contextualized with life‐history traits.  相似文献   
109.
Poor wound healing is a highly prevalent clinical problem with, as yet, no entirely satisfactory solution. A new technique, termed electrospinning, may provide a solution to improve wound healing. Due to their large surface area to volume ratio and porosity, the nanofibers created by electrospinning are able to deliver sustained drug release and oxygen to the wound. Using different types of polymers with varying properties helps strengthening nanofiber and exudates absorption. The nanofibers appear to have an ideal structure applicable for wound healing and, in combination with curcumin, can blend the anti-inflammatory and antioxidant properties of curcumin into a highly effective wound dressing. The use of suitable curcumin solvents and the slow release of curcumin from the nanofiber help in overcoming the known limitations of curcumin, specifically its low stability and limited bioavailability. Here, we review the studies which have been done on synthesized nanofibers containing curcumin, produced by the electrospinning technique, for the purpose of wound healing.  相似文献   
110.
MicroRNAs (miRNAs) are important regulators of cell-autonomous gene expression that influence many biological processes. They are also released from cells and are present in virtually all body fluids, including blood, urine, saliva, sweat, and milk. The functional role of nutritionally obtained extracellular miRNAs is controversial, and irrefutable demonstration of exogenous miRNA uptake by cells and canonical miRNA function is still lacking. Here we show that miRNAs are present at high levels in the milk of lactating mice. To investigate intestinal uptake of miRNAs in newborn mice, we employed genetic models in which newborn miR-375 and miR-200c/141 knockout mice received milk from wild-type foster mothers. Analysis of the intestinal epithelium, blood, liver, and spleen revealed no evidence for miRNA uptake. miR-375 levels in hepatocytes were at the limit of detection and remained orders of magnitude below the threshold for target gene regulation (between 1000 and 10,000 copies/cell). Furthermore, our study revealed rapid degradation of milk miRNAs in intestinal fluid. Together, our results indicate a nutritional rather than gene-regulatory role of miRNAs in the milk of newborn mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号