全文获取类型
收费全文 | 6008篇 |
免费 | 564篇 |
国内免费 | 2篇 |
专业分类
6574篇 |
出版年
2024年 | 5篇 |
2023年 | 48篇 |
2022年 | 99篇 |
2021年 | 218篇 |
2020年 | 117篇 |
2019年 | 172篇 |
2018年 | 207篇 |
2017年 | 158篇 |
2016年 | 250篇 |
2015年 | 432篇 |
2014年 | 381篇 |
2013年 | 419篇 |
2012年 | 558篇 |
2011年 | 521篇 |
2010年 | 324篇 |
2009年 | 234篇 |
2008年 | 346篇 |
2007年 | 364篇 |
2006年 | 323篇 |
2005年 | 273篇 |
2004年 | 255篇 |
2003年 | 239篇 |
2002年 | 203篇 |
2001年 | 43篇 |
2000年 | 42篇 |
1999年 | 47篇 |
1998年 | 50篇 |
1997年 | 29篇 |
1996年 | 20篇 |
1995年 | 21篇 |
1994年 | 17篇 |
1993年 | 11篇 |
1992年 | 10篇 |
1991年 | 14篇 |
1990年 | 14篇 |
1989年 | 10篇 |
1988年 | 6篇 |
1987年 | 4篇 |
1986年 | 11篇 |
1985年 | 4篇 |
1984年 | 6篇 |
1983年 | 3篇 |
1982年 | 6篇 |
1981年 | 6篇 |
1980年 | 7篇 |
1977年 | 4篇 |
1973年 | 5篇 |
1968年 | 4篇 |
1967年 | 4篇 |
1941年 | 2篇 |
排序方式: 共有6574条查询结果,搜索用时 15 毫秒
231.
232.
Audrey Mérens Stéphanie Matrat Alexandra Aubry Christine Lascols Vincent Jarlier Claude-James Soussy Jean-Didier Cavallo Emmanuelle Cambau 《Journal of bacteriology》2009,191(5):1587-1594
MfpAMt and QnrB4 are two newly characterized pentapeptide repeat proteins (PRPs) that interact with DNA gyrase. The mfpAMt gene is chromosome borne in Mycobacterium tuberculosis, while qnrB4 is plasmid borne in enterobacteria. We expressed and purified the two PRPs and compared their effects on DNA gyrase, taking into account host specificity, i.e., the effect of MfpAMt on M. tuberculosis gyrase and the effect of QnrB4 on Escherichia coli gyrase. Whereas QnrB4 inhibited E. coli gyrase activity only at concentrations higher than 30 μM, MfpAMt inhibited all catalytic reactions of the M. tuberculosis gyrase described for this enzyme (supercoiling, cleavage, relaxation, and decatenation) with a 50% inhibitory concentration of 2 μM. We showed that the D87 residue in GyrA has a major role in the MfpAMt-gyrase interaction, as D87H and D87G substitutions abolished MfpAMt inhibition of M. tuberculosis gyrase catalytic reactions, while A83S modification did not. Since MfpAMt and QnrB4 have been involved in resistance to fluoroquinolones, we measured the inhibition of the quinolone effect in the presence of each PRP. QnrB4 reversed quinolone inhibition of E. coli gyrase at 0.1 μM as described for other Qnr proteins, but MfpAMt did not modify M. tuberculosis gyrase inhibition by fluoroquinolones. Crossover experiments showed that MfpAMt also inhibited E. coli gyrase function, while QnrB4 did not reverse quinolone inhibition of M. tuberculosis gyrase. In conclusion, our in vitro experiments showed that MfpAMt and QnrB4 exhibit opposite effects on DNA gyrase and that these effects are protein and species specific.The pentapeptide repeat protein (PRP) family includes more than 500 proteins in the prokaryotic and eukaryotic kingdoms (45). PRPs are characterized by the repetition of the pentapeptide repeat motif [S,T,A,V][D,N][L,F][S,T,R][G] (6), which results in a right-handed β-helical structure (8, 17). The functions of the majority of the members of this large and heterogeneous family remain unknown, but three PRPs, McbG (from Escherichia coli), MfpAMt (from Mycobacterium tuberculosis), and Qnr (from Klebsiella pneumoniae and other enterobacteria) were reported to interact with DNA gyrase, at least with the E. coli enzyme (17, 33, 35, 44). McbG was shown to protect E. coli DNA gyrase from the toxic action of microcin B17 (33). Qnr and MfpAMt were involved in resistance to fluoroquinolones, which are synthetic antibacterial agents prescribed worldwide for the treatment of various infectious diseases, including tuberculosis (7).DNA gyrase is an essential ATP-dependent enzyme that transiently cleaves a segment of double-stranded DNA, passes another piece of DNA through the break, and reseals it (12). DNA gyrase is unique in catalyzing the negative supercoiling of DNA in order to facilitate the progression of RNA polymerase. Most eubacteria, such as E. coli, have two type II DNA topoisomerases, i.e., DNA gyrase and topoisomerase IV, but a few, such as M. tuberculosis, harbor only DNA gyrase (11).Quinolones target type II topoisomerases, and their activity is measured by the inhibition of supercoiling by gyrase or decatenation by topoisomerase IV and stabilization of complexes composed of topoisomerase covalently linked to cleaved DNA (16). The DNA gyrase active enzyme is a GyrA2GyrB2 heterotetramer. The quinolone-gyrase interaction site in gyrase is thought to be located at the so-called quinolone resistance-determining regions (QRDR) in the A subunit (amino acids 57 to 196 in GyrA) and the B subunit (amino acids 426 to 466 in GyrB), which contain the majority of mutations conferring quinolone resistance (19). The GyrB QRDR is thought to interact with the GyrA QRDR to form a drug-binding pocket (18). Resistance to quinolones is usually due to chromosomal mutations either in the structural genes encoding type II topoisomerases (QRDR) (19, 22) or in regulatory genes producing decreased cell wall permeability or enhancement of efflux pumps (36). The recent emergence of plasmid-borne resistance genes, such as qnr (9, 13, 31, 38, 46), aac(6′)-Ib-cr (32, 39) and qepA (34, 47), renewed interest in quinolone resistance, and especially interest in the new Qnr-based mechanism. Three qnr determinants have been identified so far: qnrA (variants A1 to A6), qnrB (variants B1 to B19), and qnrS (variants S1 and S2) (15, 21, 23, 27). Qnr confers a new mechanism of quinolone resistance by mediating DNA gyrase protection (42): in vitro, QnrA1 and QnrB1 protect E. coli DNA gyrase and topoisomerase IV from the inhibitory effect of fluoroquinolones in a concentration-dependent manner (23, 42-44). Although Qnr was shown to bind GyrA and GyrB and compete with DNA binding, the consequences of Qnr binding for enzyme performance are not yet clear.mfpA, a chromosomal gene that encodes a 192-amino-acid PRP, is an intrinsic quinolone resistance determinant of Mycobacterium smegmatis (29). A similar gene, mfpAMt, was found in the M. tuberculosis genome, and MfpAMt shows 67% identity with MfpA. Recent crystallography analysis of MfpAMt showed that its atomic structure displays size, shape, and electrostatic similarity to B-form DNA, and MfpAMt has been suggested to interact with DNA gyrase via DNA mimicry (17). The effect of MfpAMt was studied by testing E. coli DNA gyrase, and MfpAMt showed catalytic inhibition (17, 37), but whether it protects gyrase from quinolones was not assessed. Because the structure and functions of the M. tuberculosis gyrase, as well as its interaction with quinolones, differ from those of the E. coli gyrase (2, 3, 20, 26, 28), we suspected that the PRP-topoisomerase interaction exhibits species specificity, i.e., depends on the proteins issued from the same host.Our objective was to compare the effects of MfpAMt and Qnr on their respective targets, i.e., the effect of MfpAMt on the M. tuberculosis gyrase and the effect of Qnr on the E. coli gyrase, by assessing (i) the catalytic reactions of the enzyme and (ii) the interaction with the DNA gyrase-DNA-fluoroquinolone ternary complex. Among the Qnr proteins, we selected the QnrB4 protein, which is a frequent variant of QnrB and has not yet been purified and studied. We cloned, expressed, and purified the two PRPs, MfpAMt and QnrB4, as recombinant His tag fusion proteins and assessed their functions under the same experimental conditions. 相似文献
233.
Currently, one of the major debates about the American peopling focuses on the number of populations that originated the biological diversity found in the continent during the Holocene. The studies of craniometric variation in American human remains dating from that period have shown morphological differences between the earliest settlers of the continent and some of the later Amerindian populations. This led some investigators to suggest that these groups—known as Paleomericans and Amerindians respectively—may have arisen from two biologically different populations. On the other hand, most DNA studies performed over extant and ancient populations suggest a single migration of a population from Northeast Asia. Comparing craniometric and mtDNA data of diachronic samples from East Central Argentina dated from 8,000 to 400 years BP, we show here that even when the oldest individuals display traits attributable to Paleoamerican crania, they present the same mtDNA haplogroups as later populations with Amerindian morphology. A possible explanation for these results could be that the craniofacial differentiation was a local phenomenon resulting from random (i.e. genetic drift) and non-random factors (e.g. selection and plasticity). Local processes of morphological differentiation in America are a probable scenario if we take into consideration the rapid peopling and the great ecological diversity of this continent; nevertheless we will discuss alternative explanations as well. 相似文献
234.
Colonies of the freshwater bryozoan Plumatella repens collected from a river in the UK were found to be infected with the myxozoan parasite Buddenbrockia plumatellae following laboratory maintenance. Optimisation of the bryozoan diet allowed maintenance of infected colonies for 90 d, permitting observation by light and electron microscopy of the sequential parasitic developmental cycle. Parasite stages were associated with host peritoneum, identifying the primary developmental phase. The association of B. plumatellae cells with peritoneal basal lamina and morphological similarities between parasite and host suggested that the parasite remodelled host tissue. Progressive expansion and elongation of individual parasites led to the release of freely floating vermiform stages within the host coelomic cavities. Within these 'worms', intraluminal masses developed, resulting in the formation of spores. Upon maturation, the 'worms' ruptured, releasing many spores within the host that were subsequently discharged. Although parasitism led to increased bryozoan fragmentation and lowered statoblast production, some colonies did survive, resulting in repeated waves of infection. Long-term laboratory maintenance of infected bryozoan colonies could provide a means of maintaining B. plumatellae for study until the full life cycle is ascertained. 相似文献
235.
Efthimiadou EK Sanakis Y Katsarou M Raptopoulou CP Karaliota A Katsaros N Psomas G 《Journal of inorganic biochemistry》2006,100(8):1378-1388
The mononuclear copper complexes with the quinolone antibacterial drug enrofloxacin (=Herx) in the presence or not of a nitrogen donor heterocyclic ligand 1,10-phenanthroline (=phen) and 2,2'-bipyridine (=bipy) have been prepared and characterized. Interaction of copper(II) with deprotonated enrofloxacin leads to the formation of the neutral complex Cu(erx)2(H2O), 1, while the presence of phen or bipy leads to the formation of a neutral or a cationic mononuclear complex, respectively. The crystal structures of (chloro)(1,10-phenanthroline)(enrofloxacinato)copper(II), 2, and (aqua)(2,2'-bipyridine)(enrofloxacinato)copper(II) chloride, 3, have been determined with X-ray crystallography. The complexes have been studied with X-band electron paramagnetic resonance in aqueous solutions at liquid helium temperature. The study of the interaction of the complexes with calf-thymus DNA has been performed with diverse spectroscopic techniques and has showed that all complexes are bound to DNA by the intercalative mode. The antimicrobial efficiency of the complexes has been tested on three different microorganisms and the available evidence supports that the best inhibition is provided by Cu(erx)2(H2O) (minimum inhibitory concentration=0.125 microg mL(-1)) against Escherichia coli and Pseudomonas aeruginosa. 相似文献
236.
Outer membrane vesicle production by Escherichia coli is independent of membrane instability 下载免费PDF全文
It has been long noted that gram-negative bacteria produce outer membrane vesicles, and recent data demonstrate that vesicles released by pathogenic strains can transmit virulence factors to host cells. However, the mechanism of vesicle release has remained undetermined. This genetic study addresses whether these structures are merely a result of membrane instability or are formed by a more directed process. To elucidate the regulatory mechanisms and physiological basis of vesiculation, we conducted a screen in Escherichia coli to identify gene disruptions that caused vesicle over- or underproduction. Only a few low-vesiculation mutants and no null mutants were recovered, suggesting that vesiculation may be a fundamental characteristic of gram-negative bacterial growth. Gene disruptions were identified that caused differences in vesicle production ranging from a 5-fold decrease to a 200-fold increase relative to wild-type levels. These disruptions included loci governing outer membrane components and peptidoglycan synthesis as well as the sigma(E) cell envelope stress response. Mutations causing vesicle overproduction did not result in upregulation of the ompC gene encoding a major outer membrane protein. Detergent sensitivity, leakiness, and growth characteristics of the novel vesiculation mutant strains did not correlate with vesiculation levels, demonstrating that vesicle production is not predictive of envelope instability. 相似文献
237.
Silicateins, the major biosilica forming enzymes present in demosponges: protein analysis and phylogenetic relationship 总被引:6,自引:0,他引:6
Müller WE Boreiko A Wang X Belikov SI Wiens M Grebenjuk VA Schlossmacher U Schröder HC 《Gene》2007,395(1-2):62-71
Silicateins are enzymes, which are restricted to sponges (phylum Porifera), that mediate the catalytic formation of biosilica from monomeric silicon compounds. The silicatein protein is compartmented in the sponges in the axial filaments which reside in the axial canals of the siliceous spicules. In the present study silicatein has been isolated from the freshwater sponge Lubomirskia baicalensis where it occurs in isoforms with sizes of 23 kDa, 24 kDa and 26 kDa. Since the larger protein is glycosylated we posit that it is a processed form of one of the smaller size forms. The silicatein isoforms are post-translationally modified by phosphorylation; at least four isoforms exist with pI's of 5.4, of 5.2, of 4.9 and of 4.7. Surprisingly silicatein not only mediates polymerization of silicate, but also displays proteolytic activity which is specific for cathepsin L enzymes, thus underscoring the high relationship of the silicateins to cathepsin L. The cDNAs from L. baicalensis for silicatein and cathepsin L, as well as the respective genes, were cloned. It was found that the five introns present in the sponge genes are highly conserved up to human cathepsin L. This analysis has been completed by sequencing of two silicatein genes (both for silicatein-alpha and -beta) and of cathepsin L from another demosponge, Suberites domuncula. A comprehensive phylogenetic analysis with these new sequences shed new light upon the evolution of cathepsin L and silicatein families which occurred at the base of the metazoan phyla. It is concluded, that in parallel with the emergence of these enzymes at first the number of introns increased, especially in the coding region of the mature enzyme. Later in evolution the number of introns decreased again. We postulate that modification of the catalytic triad, especially of its first amino acid, is a suitable target for a chemical modulation of enzyme function of the silicateins/cathepsin L. 相似文献
238.
Alexandra Nietsch 《International journal of primatology》1999,20(4):567-583
A most conspicuous vocal behavior of Sulawesi tarsiers is the loud calls that males and females coordinate into duets. Differences in the acoustic structure of this display relate to specific differentiation in Tarsius spectrum and T. dianae. More recent studies on dueting behavior indicated the existence of a new species of tarsiers on the Togian Islands in Tomini Bay. I analyzed the duet calls of the Togian tarsier to assess the differences in acoustic structure of duet calls between this putative new species and T. spectrum or T. dianae. Discriminant function analysis revealed that Togian tarsiers, T. spectrum and T. dianae, are clearly separated by acoustic characteristics in songs. The degree of separation of the Togian tarsiers from the mainland species support them being a distinct species. 相似文献
239.
Biochemical Characterization of Fungal Phytases (myo-Inositol Hexakisphosphate Phosphohydrolases): Catalytic Properties 总被引:15,自引:0,他引:15 下载免费PDF全文
Markus Wyss Roland Brugger Alexandra Kronenberger Roland Rmy Rachel Fimbel Gottfried Oesterhelt Martin Lehmann Adolphus P. G. M. van Loon 《Applied microbiology》1999,65(2):367-373
Supplementation with phytase is an effective way to increase the availability of phosphorus in seed-based animal feed. The biochemical characteristics of an ideal phytase for this application are still largely unknown. To extend the biochemical characterization of wild-type phytases, the catalytic properties of a series of fungal phytases, as well as Escherichia coli phytase, were determined. The specific activities of the fungal phytases at 37°C ranged from 23 to 196 U · (mg of protein)−1, and the pH optima ranged from 2.5 to 7.0. When excess phytase was used, all of the phytases were able to release five phosphate groups of phytic acid (myo-inositol hexakisphosphate), which left myo-inositol 2-monophosphate as the end product. A combination consisting of a phytase and Aspergillus niger pH 2.5 acid phosphatase was able to liberate all six phosphate groups. When substrate specificity was examined, the A. niger, Aspergillus terreus, and E. coli phytases were rather specific for phytic acid. On the other hand, the Aspergillus fumigatus, Emericella nidulans, and Myceliophthora thermophila phytases exhibited considerable activity with a broad range of phosphate compounds, including phenyl phosphate, p-nitrophenyl phosphate, sugar phosphates, α- and β-glycerophosphates, phosphoenolpyruvate, 3-phosphoglycerate, ADP, and ATP. Both phosphate liberation kinetics and a time course experiment in which high-performance liquid chromatography separation of the degradation intermediates was used showed that all of the myo-inositol phosphates from the hexakisphosphate to the bisphosphate were efficiently cleaved by A. fumigatus phytase. In contrast, phosphate liberation by A. niger or A. terreus phytase decreased with incubation time, and the myo-inositol tris- and bisphosphates accumulated, suggesting that these compounds are worse substrates than phytic acid is. To test whether broad substrate specificity may be advantageous for feed application, phosphate liberation kinetics were studied in vitro by using feed suspensions supplemented with 250 or 500 U of either A. fumigatus phytase or A. niger phytase (Natuphos) per kg of feed. Initially, phosphate liberation was linear and identical for the two phytases, but considerably more phosphate was liberated by the A. fumigatus phytase than by the A. niger phytase at later stages of incubation. 相似文献
240.
Frederico M. Batista Alexandra Leitão Vera G. Fonseca Radhouan Ben-Hamadou Maria A. Henriques Pierre Boudry 《Journal of experimental marine biology and ecology》2007,352(1):226-233
The Portuguese oyster, Crassostrea angulata, is taxonomically close to the Pacific oyster, C. gigas, but there are clear genetic and phenotypic differences between these taxa. Among those differences, the faster growth of C. gigas compared with C. angulata has often been observed in the field. Crosses between C. angulata and C. gigas were performed to investigate the relationship between growth variation and somatic aneuploidy at the individual level in the two taxa and their reciprocal hybrids. The different progenies were reared in Ria Formosa (Portugal) under standard farming conditions. Growth rate and survival were significantly higher in C. gigas than in C. angulata, and the hybrids showed intermediate performances. Significant differences were also observed in the proportion of aneuploid cells (PAC) and of missing chromosomes (PMC) between the two taxa, C. angulata showing the highest values. Intermediate values of PAC and PMC were observed in the hybrids, supporting additive genetic bases of these parameters. Our results also confirm the negative correlation between somatic aneuploidy and growth rate at the individual level, as previously reported in C. gigas. 相似文献