首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20602篇
  免费   1950篇
  国内免费   12篇
  2023年   103篇
  2022年   172篇
  2021年   567篇
  2020年   266篇
  2019年   393篇
  2018年   436篇
  2017年   341篇
  2016年   596篇
  2015年   991篇
  2014年   1027篇
  2013年   1410篇
  2012年   1608篇
  2011年   1581篇
  2010年   975篇
  2009年   849篇
  2008年   1224篇
  2007年   1202篇
  2006年   1081篇
  2005年   1027篇
  2004年   917篇
  2003年   860篇
  2002年   832篇
  2001年   203篇
  2000年   157篇
  1999年   179篇
  1998年   168篇
  1997年   140篇
  1996年   118篇
  1995年   114篇
  1994年   122篇
  1993年   118篇
  1992年   133篇
  1991年   120篇
  1990年   107篇
  1989年   94篇
  1988年   98篇
  1987年   87篇
  1986年   73篇
  1985年   97篇
  1984年   111篇
  1983年   70篇
  1982年   92篇
  1981年   84篇
  1980年   85篇
  1979年   86篇
  1977年   62篇
  1976年   74篇
  1975年   73篇
  1974年   61篇
  1973年   64篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
51.
Acetobacter acetii DSMZ3508 and related bacteria converted 2,2-dimethyl-1,3-propanediol into 3-hydroxypivalic acid (2,2-dimethyl-3-hydroxypropionic acid; 3HP) during submerged cultivation in mineral salt medium. The maximum yield of 3-hydroxypivalic acid was 24.4% of the fed substrate after 18 days. Cultivation parameters, as pH, cell density, optimal substrate concentration, and oxygen supply for the bioconversion process were determined.  相似文献   
52.
The pannexin family of channel-forming proteins is composed of 3 distinct but related members called Panx1, Panx2, and Panx3. Pannexins have been implicated in many physiological processes as well as pathological conditions, primarily through their function as ATP release channels. However, it is currently unclear if all pannexins are subject to similar or different post-translational modifications as most studies have focused primarily on Panx1. Using in vitro biochemical assays performed on ectopically expressed pannexins in HEK-293T cells, we confirmed that all 3 pannexins are N-glycosylated to different degrees, but they are not modified by sialylation or O-linked glycosylation in a manner that changes their apparent molecular weight. Using cell-free caspase assays, we also discovered that similar to Panx1, the C-terminus of Panx2 is a substrate for caspase cleavage. Panx3, on the other hand, is not subject to caspase digestion but an in vitro biotin switch assay revealed that it was S-nitrosylated by nitric oxide donors. Taken together, our findings uncover novel and diverse pannexin post-translational modifications suggesting that they may be differentially regulated for distinct or overlapping cellular and physiological functions.  相似文献   
53.
To investigate the relationship between a protein’s sequence and its biophysical properties, we studied the effects of more than 100 mutations in Avena sativa light-oxygen-voltage domain 2, a model protein of the Per-Arnt-Sim family. The A. sativa light–oxygen–voltage domain 2 undergoes a photocycle with a conformational change involving the unfolding of the terminal helices. Whereas selection studies typically search for winners in a large population and fail to characterize many sites, we characterized the biophysical consequences of mutations throughout the protein using NMR, circular dichroism, and ultraviolet/visible spectroscopy. Despite our intention to introduce highly disruptive substitutions, most had modest or no effect on function, and many could even be considered to be more photoactive. Substitutions at evolutionarily conserved sites can have minimal effect, whereas those at nonconserved positions can have large effects, contrary to the view that the effects of mutations, especially at conserved positions, are predictable. Using predictive models, we found that the effects of mutations on biophysical function and allostery reflect a complex mixture of multiple characteristics including location, character, electrostatics, and chemistry.  相似文献   
54.
The localization of acetyl-CoA synthetase in the spinach leaf cell was examined. When the different compartments of lysed spinach protoplasts were assayed for marker enzymes and acetyl-CoA synthetase, it was determined that the synthetase was totally localized in the chloroplast compartment. Analysis of spinach leaf for free acetate revealed that this acid was present at a 1 mm level in the leaf cell. It is suggested that free acetate probably derived from a number of sources in the cell diffuses into the chloroplast stroma compartment where it is converted to acetyl-CoA and thence employed for biosynthetic reactions. Thus, free acetate is metabolically inert in the leaf cell until it is transported to the only compartment that contains acetyl-CoA synthetase, namely the chloroplast.  相似文献   
55.
56.
57.
The nature of the conversion of thyroxine (T4) to triiodothyronine (T3) and reverse triiodothyronine (rT3) was investigated in rat liver homogenate and microsomes. A 6-fold rise of T3 and 2.5-fold rise of rT3 levels determined by specific radioimmunoassays was observed over 6 h after the addition of T4. An enzymic process is suggested that converts T4 to T3 and rT3. For T3 the optimal pH is 6 and for rT3, 9.5. The converting activity for both T3 and rT3 is temperature dependent and can be suppressed by heat, H2O2, merthiolate and by 5-propyl-2-thiouracil. rT3 and to a lesser degree iodide, were able to inhibit the production of T3 in a dose related fashion. Therefore the pH dependendy, rT3 and iodide may regulate the availability of T3 or rT3 depending on the metabolic requirements of thyroid hormones.  相似文献   
58.
Voltage-gated Kv7 channels are inhibited by agonists of Gq-protein-coupled receptors, such as histamine. Recent works have provided evidence that inhibition of vascular Kv7 channels may trigger vessel contractions. In this study, we investigated how Kv7 activity modulates the histamine-induced contractions in “healthy” and metabolic syndrome (MetS) pig right coronary arteries (CAs). We performed isometric tension and immunohistochemical studies with domestic, lean Ossabaw, and MetS Ossabaw pig CAs. We found that neither the Kv7.2/Kv7.4/Kv7.5 activator ML213 nor the general Kv7 inhibitor XE991 altered the tension of CA rings under preload, indicating that vascular Kv7 channels are likely inactive in the preloaded rings. Conversely, ML213 potently dilated histamine-pre-contracted CAs, suggesting that Kv7 channels are activated during histamine applications and yet partially inhibited by histamine. Immunohistochemistry analysis revealed strong Kv7.4 immunostaining in the medial and intimal layers of the CA wall, whereas Kv7.5 immunostaining intensity was strong in the intimal but weak in the medial layers. The medial Kv7 immunostaining was significantly weaker in MetS Ossabaw CAs as compared to lean Ossabaw or domestic CAs. Consistently, histamine-pre-contracted MetS Ossabaw CAs exhibited attenuated ML213-dependent dilations. In domestic pig CAs, where medial Kv7 immunostaining intensity was stronger, histamine-induced contractions spontaneously decayed to ~31% of the peak amplitude within 4 minutes. Oppositely, in Ossabaw CAs, where Kv7 immunostaining intensity was weaker, the histamine-induced contractions were more sustained. XE991 pretreatment significantly slowed the decay rate of histamine-induced contractions in domestic CAs, supporting the hypothesis that increased Kv7 activity correlates with a faster rate of histamine-induced contraction decay. Alternatively, XE991 significantly decreased the amplitude of bradykinin-dependent dilations in pre-contracted CAs. We propose that in CAs, a decreased expression or a loss of function of Kv7 channels may lead to sustained histamine-induced contractions and reduced endothelium-dependent relaxation, both risk factors for coronary spasm.  相似文献   
59.
60.
Tightly coupled inside-out vesicles were prepared from Paracoccus denitrificans cells (SPP, sub-Paracoccus particles) and characterized kinetically. The rate of NADH oxidation, catalysed by SPP, increases 6-8 times on addition of gramicidin. The vesicles are capable of catalysing Delta micro H+-dependent reverse electron transfer from quinol to NAD+. The kinetic parameters of the NADH-oxidase and the reverse electron transfer carried out by membrane-bound P. denitrificans complex I were estimated and compared with those of the mitochondrial enzyme. The data demonstrate that catalytic properties of the dinucleotide-binding site of the bacterial and mitochondrial complex I are almost identical, pointing out similar organization of the site in mammals and P. denitrificans. Inhibition of the bacterial complex I by a specific inhibitor of Q reduction, rotenone, is very different from that of the mitochondrial enzyme. The inhibitor is capable of suppressing the NADH oxidation reaction only at micromolar concentrations, while the activity of mitochondrial enzyme is suppressed by nanomolar concentrations of rotenone. In contrast to the mitochondrial enzyme, rotenone, even at concentrations as high as 10 micro m, does not inhibit the reverse, Delta micro H+-dependent NAD+-reductase reaction on SPP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号