首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20343篇
  免费   1897篇
  国内免费   12篇
  2023年   102篇
  2022年   266篇
  2021年   563篇
  2020年   266篇
  2019年   388篇
  2018年   435篇
  2017年   340篇
  2016年   586篇
  2015年   985篇
  2014年   1020篇
  2013年   1399篇
  2012年   1597篇
  2011年   1565篇
  2010年   967篇
  2009年   844篇
  2008年   1212篇
  2007年   1192篇
  2006年   1073篇
  2005年   1015篇
  2004年   914篇
  2003年   852篇
  2002年   823篇
  2001年   197篇
  2000年   153篇
  1999年   178篇
  1998年   168篇
  1997年   140篇
  1996年   116篇
  1995年   110篇
  1994年   116篇
  1993年   112篇
  1992年   120篇
  1991年   109篇
  1990年   98篇
  1989年   86篇
  1988年   92篇
  1987年   73篇
  1986年   69篇
  1985年   89篇
  1984年   98篇
  1983年   62篇
  1982年   82篇
  1981年   73篇
  1980年   68篇
  1979年   78篇
  1978年   54篇
  1977年   63篇
  1976年   65篇
  1975年   70篇
  1973年   57篇
排序方式: 共有10000条查询结果,搜索用时 501 毫秒
831.
832.
The loss of cognitive function accompanying healthy aging is not associated with extensive or characteristic patterns of cell death, suggesting it is caused by more subtle changes in synaptic properties. In the hippocampal CA1 region, long‐term potentiation requires stronger stimulation for induction in aged rats and mice and long‐term depression becomes more prevalent. An age‐dependent impairment of postsynaptic calcium homeostasis may underpin these effects. We have examined changes in presynaptic calcium signalling in aged mice using a transgenic mouse line (SyG37) that expresses a genetically encoded calcium sensor in presynaptic terminals. SyG37 mice showed an age‐dependent decline in cognitive abilities in behavioural tasks that require hippocampal processing including the Barnes maze, T‐maze and object location but not recognition tests. The incidence of LTP was significantly impaired in animals over 18 months of age. These effects of aging were accompanied by a persistent increase in resting presynaptic calcium, an increase in the presynaptic calcium signal following Schaffer collateral fibre stimulation, an increase in postsynaptic fEPSP slope and a reduction in paired‐pulse facilitation. These effects were not caused by synapse proliferation and were of presynaptic origin since they were evident in single presynaptic boutons. Aged synapses behaved like younger ones when the extracellular calcium concentration was reduced. Raising extracellular calcium had little effect on aged synapses but altered the properties of young synapses into those of their aged counterparts. These effects can be readily explained by an age‐dependent change in the properties or numbers of presynaptic calcium channels.  相似文献   
833.
Metallic sodium is receiving renewed interest as a battery anode material because the metal is earth‐abundant, inexpensive, and offers a high specific storage capacity (1166 mAh g?1 at ?2.71 V vs the standard hydrogen potential). Unlike metallic lithium, the case for Na as the anode in rechargeable batteries has already been demonstrated on a commercial scale in high‐temperature Na||S and Na||NiCl2 secondary batteries, which increases interest. The reversibility of room temperature sodium anodes is investigated in galvanostatic plating/stripping reactions using in situ optical visualization and galvanostatic polarization measurements. It is discovered that electronic disconnection of mossy metallic Na deposits (“orphaning”) is a dominant source of anode irreversibility in liquid electrolytes. The disconnection is shown by means of direct visualization studies to be triggered by a root‐breakage process during the stripping cycle. As a further step toward electrode designs that are able to accommodate the fragile Na deposits, electrodeposition of Na is demonstrated in nonplanar electrode architectures, which provide continuous and morphology agnostic access to the metal at all stages of electrochemical cycling. On this basis, nonplanar Na electrodes are reported, which exhibit exceptionally high levels of reversibility (Coulombic efficiency >99.6% for 1 mAh cm?2 Na throughput) in room‐temperature, liquid electrolytes.  相似文献   
834.
Controlling and managing the degree of phenotypic diversification of microbial populations is a challenging task. This task not only requires detailed knowledge regarding diversification mechanisms but also advanced technical set-ups for the real-time analyses and control of population behaviour on single-cell level. In this work, set-up, design and operation of the so called segregostat are described which, in contrast to a traditional chemostat, allows the control of phenotypic diversification of microbial populations over time. Two exemplary case studies will be discussed, i.e. phenotypic diversification dynamics of Eschericia coli and Pseudomonas putida based on outer membrane permeabilization, emphasizing the applicability and versatility of the proposed approach. Upon nutrient limitation, cell population tends to diversify into several subpopulations exhibiting distinct phenotypic features (non-permeabilized and permeabilized cells). Online analysis leads to the determination of the ratio between cells in these two states, which in turn triggers the addition of glucose pulses in order to maintain a predefined diversification ratio. These results prove that phenotypic diversification can be controlled by means of defined pulse-frequency modulation within continuously running bioreactor set-ups. This lays the foundation for systematic studies, not only of phenotypic diversification but also for all processes where dynamics single-cell approaches are required, such as synthetic co-culture processes.  相似文献   
835.
836.
837.
Functional traits are increasingly being used to predict extinction risks and range shifts under long‐term climate change scenarios, but have rarely been used to study vulnerability to extreme climatic events, such as supraseasonal droughts. In streams, drought intensification can cross thresholds of habitat loss, where marginal changes in environmental conditions trigger disproportionate biotic responses. However, these thresholds have been studied only from a structural perspective, and the existence of functional nonlinearity remains unknown. We explored trends in invertebrate community functional traits along a gradient of drought intensity, simulated over 18 months, using mesocosms analogous to lowland headwater streams. We modelled the responses of 16 traits based on a priori predictions of trait filtering by drought, and also examined the responses of trait profile groups (TPGs) identified via hierarchical cluster analysis. As responses to drought intensification were both linear and nonlinear, generalized additive models (GAMs) were chosen to model response curves, with the slopes of fitted splines used to detect functional thresholds during drought. Drought triggered significant responses in 12 (75%) of the a priori‐selected traits. Behavioural traits describing movement (dispersal, locomotion) and diet were sensitive to moderate‐intensity drought, as channels fragmented into isolated pools. By comparison, morphological and physiological traits showed little response until surface water was lost, at which point we observed sudden shifts in body size, respiration mode and thermal tolerance. Responses varied widely among TPGs, ranging from population collapses of non‐aerial dispersers as channels fragmented to irruptions of small, eurythermic dietary generalists upon extreme dewatering. Our study demonstrates for the first time that relatively small changes in drought intensity can trigger disproportionately large functional shifts in stream communities, suggesting that traits‐based approaches could be particularly useful for diagnosing catastrophic ecological responses to global change.  相似文献   
838.
839.
840.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号