首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20364篇
  免费   1892篇
  国内免费   12篇
  2023年   102篇
  2022年   295篇
  2021年   563篇
  2020年   266篇
  2019年   388篇
  2018年   436篇
  2017年   341篇
  2016年   586篇
  2015年   985篇
  2014年   1020篇
  2013年   1400篇
  2012年   1597篇
  2011年   1567篇
  2010年   967篇
  2009年   844篇
  2008年   1212篇
  2007年   1192篇
  2006年   1073篇
  2005年   1015篇
  2004年   914篇
  2003年   852篇
  2002年   823篇
  2001年   197篇
  2000年   155篇
  1999年   179篇
  1998年   168篇
  1997年   140篇
  1996年   116篇
  1995年   110篇
  1994年   116篇
  1993年   112篇
  1992年   119篇
  1991年   107篇
  1990年   97篇
  1989年   85篇
  1988年   92篇
  1987年   72篇
  1986年   66篇
  1985年   89篇
  1984年   96篇
  1983年   62篇
  1982年   81篇
  1981年   72篇
  1980年   67篇
  1979年   77篇
  1978年   54篇
  1977年   60篇
  1976年   65篇
  1975年   70篇
  1973年   55篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
Fumonisin B1 (FB1) causes equine leukoencephalomalacia, porcine pulmonary edema, and liver tumors and chronic nephritis in rats. To investigate mechanisms by which FB1 induces toxicity, effects of FB1 on cellular glutathione (GSH) redox status and GSH depletion on FB1 toxicity in pig kidney (LLC-PK1) cells were studied. Treatment of LLC-PK1 cells with 50 μM FB1 for 24 hours significantly decreased cellular GSH contents from 56 ± 3.2 to 42.7 ± 4.4 nmol/mg protein (p < 0.05) and increased the activities of glutathione reductase (GR) from 25.7 ± 2.4 to 35.7 ± 5.0 μmol NADPH/mg protein (p < 0.05). The activities of glutathione peroxidase (GSHpx), catalase, and Cu,Zn-superoxide dismutase (SOD) were not changed by this treatment. Treatment of LLC-PK1 cells for 12 hours with 0.1. mM buthionine sulfoximine (BSO), a selective inhibitor of the enzyme γ-glutamylcysteine synthetase that catalyzes the rate-limiting reaction in de novo GSH synthesis, decreased cellular GSH levels to about 20% of that found in the control cells. The cells pretreated with 0.1 mM BSO for 12 hours were significantly sensitized to the FB1 cytotoxicity as determined by a long-term survival assay (p < 0.05). The results demonstrate that FB1 changes GSH redox cycle status in LLC-PK1 cells, and GSH may play a role in cytoprotection against FB1 toxicity. © 1997 John Wiley & Sons, Inc.  相似文献   
972.
The SARS-CoV-2 coronavirus is the causal agent of the current global pandemic. SARS-CoV-2 belongs to an order, Nidovirales, with very large RNA genomes. It is proposed that the fidelity of coronavirus (CoV) genome replication is aided by an RNA nuclease complex, comprising the non-structural proteins 14 and 10 (nsp14–nsp10), an attractive target for antiviral inhibition. Our results validate reports that the SARS-CoV-2 nsp14–nsp10 complex has RNase activity. Detailed functional characterization reveals nsp14–nsp10 is a versatile nuclease capable of digesting a wide variety of RNA structures, including those with a blocked 3′-terminus. Consistent with a role in maintaining viral genome integrity during replication, we find that nsp14–nsp10 activity is enhanced by the viral RNA-dependent RNA polymerase complex (RdRp) consisting of nsp12–nsp7–nsp8 (nsp12–7–8) and demonstrate that this stimulation is mediated by nsp8. We propose that the role of nsp14–nsp10 in maintaining replication fidelity goes beyond classical proofreading by purging the nascent replicating RNA strand of a range of potentially replication-terminating aberrations. Using our developed assays, we identify drug and drug-like molecules that inhibit nsp14–nsp10, including the known SARS-CoV-2 major protease (Mpro) inhibitor ebselen and the HIV integrase inhibitor raltegravir, revealing the potential for multifunctional inhibitors in COVID-19 treatment.  相似文献   
973.
974.
Plasmids are mobile genetic elements that play a key role in microbial ecology and evolution by mediating horizontal transfer of important genes, such as antimicrobial resistance genes. Many microbial genomes have been sequenced by short read sequencers and have resulted in a mix of contigs that derive from plasmids or chromosomes. New tools that accurately identify plasmids are needed to elucidate new plasmid-borne genes of high biological importance. We have developed Deeplasmid, a deep learning tool for distinguishing plasmids from bacterial chromosomes based on the DNA sequence and its encoded biological data. It requires as input only assembled sequences generated by any sequencing platform and assembly algorithm and its runtime scales linearly with the number of assembled sequences. Deeplasmid achieves an AUC–ROC of over 89%, and it was more accurate than five other plasmid classification methods. Finally, as a proof of concept, we used Deeplasmid to predict new plasmids in the fish pathogen Yersinia ruckeri ATCC 29473 that has no annotated plasmids. Deeplasmid predicted with high reliability that a long assembled contig is part of a plasmid. Using long read sequencing we indeed validated the existence of a 102 kb long plasmid, demonstrating Deeplasmid''s ability to detect novel plasmids.  相似文献   
975.
Sponges (phylum Porifera) are early-branching animals, whose outwardly simple body plan is underlain by a complex genetic repertoire. The transition from a mobile larva to an attached filter-feeding organism occurs by metamorphosis, a process accompanied by a radical change of the body plan and cell transdifferentiation. The continuity between larval cells and adult tissues is still obscure. In a previous study, we have produced polyclonal antibodies against the major protein of the flagellated cells covering the larva of the sponge Halisarca dujardini, used them to trace the fate of these cells and shown that the larval flagellated cells transdifferentiate into the choanocytes. In the present work, we identified the sequence of this novel protein, which we named ilborin. A search in the open databases showed that multiple orthologues of the newly identified protein are present in sponges, cnidarians, flatworms, ctenophores and echinoderms, but none of them has been described yet. Ilborin has two conserved domains: triosephosphate isomerase-barrel, which has enzymatic activity against macroergic compounds, and canonical EF-hand, which binds calcium. mRNA of ilborin is expressed in the larval flagellated cells. We suggest that the new protein is involved in the calcium-mediated regulation of energy metabolism, whose activation precedes metamorphosis.  相似文献   
976.
977.
Transformation of group A streptococci by electroporation   总被引:1,自引:0,他引:1  
Abstract The introduction, via electroporation, of free plasmid DNA into three strains of Streptococcus pyogenes is described. The method is very simple and rapid and efficiencies vary from 1 × 103 to 4 × 104 per μg of DNA. The method was also used to introduce an integrative plasmid and transformants were obtained, albeit at a somewhat lower frequency (2 × 102). Some of the plasmids used in this study are derivatives of the Lactococcus lactis subsp. cremoris Wg2 plasmid pWV01. These broad host range vectors replicate in Gram-positives as well as Gram-negatives (viz. Escherichia coli ). Here we show that they also replicate in S. pyogenes and S. sanguis .  相似文献   
978.
Indirect immunofluorescent microscopy was used to study the distribution of elongation factor 2 (eEF-2) in fixed human skin diploid and mouse embryo fibroblasts. It was found earlier that some of the eEF-2 ribosomes and initiation factor 2 (eIF-2) are co-localized with a part of the actin microfilament bundles in these cells (Gavrilova et al., 1987; Shestakova et al., 1991). Here it has been shown that inhibition of protein synthesis either by inactivation of eEF-2 itself with diphtheria toxin or by inactivation of ribosomes with ricin does not abolish the distribution of eEF-2 along the actin microfilament bundles. At the same time, the disassembly of actin microfilaments by cytochalasin D results also in the disappearance of eEF-2-carrying threads. This means that the eEF-2-carrying threads do not exist per se, and that the organization of eEF-2 in visible "filaments" depends upon the integrity of the actin cytoskeleton.  相似文献   
979.
980.
Attachment to the intestinal epithelium is critical to the lifestyle of the ubiquitous parasite Giardia lamblia. The ventrolateral flange is a sheet-like membrane protrusion at the interface between parasites and attached surfaces. This structure has been implicated in attachment, but its role has been poorly defined. Here, we identified a novel actin associated protein with putative WH2-like actin binding domains we named Flangin. Flangin complexes with Giardia actin (GlActin) and is enriched in the ventrolateral flange making it a valuable marker for studying the flanges’ role in Giardia biology. Live imaging revealed that the flange grows to around 1 μm in width after cytokinesis, then remains uniform in size during interphase, grows in mitosis, and is resorbed during cytokinesis. A flangin truncation mutant stabilizes the flange and blocks cytokinesis, indicating that flange disassembly is necessary for rapid myosin-independent cytokinesis in Giardia. Rho family GTPases are important regulators of membrane protrusions and GlRac, the sole Rho family GTPase in Giardia, was localized to the flange. Knockdown of Flangin, GlActin, and GlRac result in flange formation defects. This indicates a conserved role for GlRac and GlActin in forming membrane protrusions, despite the absence of canonical actin binding proteins that link Rho GTPase signaling to lamellipodia formation. Flangin-depleted parasites had reduced surface contact and when challenged with fluid shear force in flow chambers they had a reduced ability to remain attached, confirming a role for the flange in attachment. This secondary attachment mechanism complements the microtubule based adhesive ventral disc, a feature that may be particularly important during mitosis when the parental ventral disc disassembles in preparation for cytokinesis. This work supports the emerging view that Giardia’s unconventional actin cytoskeleton has an important role in supporting parasite attachment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号