首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20503篇
  免费   1904篇
  国内免费   13篇
  22420篇
  2023年   121篇
  2022年   300篇
  2021年   565篇
  2020年   266篇
  2019年   389篇
  2018年   437篇
  2017年   342篇
  2016年   588篇
  2015年   991篇
  2014年   1023篇
  2013年   1401篇
  2012年   1599篇
  2011年   1568篇
  2010年   971篇
  2009年   852篇
  2008年   1214篇
  2007年   1194篇
  2006年   1073篇
  2005年   1015篇
  2004年   915篇
  2003年   852篇
  2002年   824篇
  2001年   200篇
  2000年   153篇
  1999年   184篇
  1998年   176篇
  1997年   142篇
  1996年   121篇
  1995年   114篇
  1994年   118篇
  1993年   115篇
  1992年   121篇
  1991年   113篇
  1990年   102篇
  1989年   87篇
  1988年   94篇
  1987年   77篇
  1986年   70篇
  1985年   93篇
  1984年   97篇
  1983年   64篇
  1982年   83篇
  1981年   74篇
  1980年   69篇
  1979年   79篇
  1978年   57篇
  1977年   65篇
  1976年   66篇
  1975年   72篇
  1973年   56篇
排序方式: 共有10000条查询结果,搜索用时 12 毫秒
91.
The SARS‐CoV‐2 infection cycle is a multistage process that relies on functional interactions between the host and the pathogen. Here, we repurposed antiviral drugs against both viral and host enzymes to pharmaceutically block methylation of the viral RNA 2''‐O‐ribose cap needed for viral immune escape. We find that the host cap 2''‐O‐ribose methyltransferase MTr1 can compensate for loss of viral NSP16 methyltransferase in facilitating virus replication. Concomitant inhibition of MTr1 and NSP16 efficiently suppresses SARS‐CoV‐2 replication. Using in silico target‐based drug screening, we identify a bispecific MTr1/NSP16 inhibitor with anti‐SARS‐CoV‐2 activity in vitro and in vivo but with unfavorable side effects. We further show antiviral activity of inhibitors that target independent stages of the host SAM cycle providing the methyltransferase co‐substrate. In particular, the adenosylhomocysteinase (AHCY) inhibitor DZNep is antiviral in in vitro, in ex vivo, and in a mouse infection model and synergizes with existing COVID‐19 treatments. Moreover, DZNep exhibits a strong immunomodulatory effect curbing infection‐induced hyperinflammation and reduces lung fibrosis markers ex vivo. Thus, multispecific and metabolic MTase inhibitors constitute yet unexplored treatment options against COVID‐19.  相似文献   
92.
DNA ligases, critical enzymes for in vivo genome maintenance and modern molecular biology, catalyze the joining of adjacent 3′-OH and 5′-phosphorylated ends in DNA. To determine whether DNA annealing equilibria or properties intrinsic to the DNA ligase enzyme impact end-joining ligation outcomes, we used a highly multiplexed, sequencing-based assay to profile mismatch discrimination and sequence bias for several ligases capable of efficient end-joining. Our data reveal a spectrum of fidelity and bias, influenced by both the strength of overhang annealing as well as sequence preferences and mismatch tolerances that vary both in degree and kind between ligases. For example, while T7 DNA ligase shows a strong preference for ligating high GC sequences, other ligases show little GC-dependent bias, with human DNA Ligase 3 showing almost none. Similarly, mismatch tolerance varies widely among ligases, and while all ligases tested were most permissive of G:T mismatches, some ligases also tolerated bulkier purine:purine mismatches. These comprehensive fidelity and bias profiles provide insight into the biology of end-joining reactions and highlight the importance of ligase choice in application design.  相似文献   
93.
Chromosome 17q23 amplification occurs in 20% of primary breast tumours and is associated with poor outcome. The TBX2 gene is located on 17q23 and is often over-expressed in this breast tumour subset. TBX2 is an anti-senescence gene, promoting cell growth and survival through repression of Tumour Suppressor Genes (TSGs), such as NDRG1 and CST6. Previously we found that TBX2 cooperates with the PRC2 complex to repress several TSGs, and that PRC2 inhibition restored NDRG1 expression to impede cellular proliferation. Here, we now identify CoREST proteins, LSD1 and ZNF217, as novel interactors of TBX2. Genetic or pharmacological targeting of CoREST emulated TBX2 loss, inducing NDRG1 expression and abolishing breast cancer growth in vitro and in vivo. Furthermore, we uncover that TBX2/CoREST targeting of NDRG1 is achieved by recruitment of TBX2 to the NDRG1 promoter by Sp1, the abolishment of which resulted in NDRG1 upregulation and diminished cancer cell proliferation. Through ChIP-seq we reveal that 30% of TBX2-bound promoters are shared with ZNF217 and identify novel targets repressed by TBX2/CoREST; of these targets a lncRNA, LINC00111, behaves as a negative regulator of cell proliferation. Overall, these data indicate that inhibition of CoREST proteins represents a promising therapeutic intervention for TBX2-addicted breast tumours.  相似文献   
94.
95.
Sarcotoxin IA is an antibacterial peptide that is secreted by a meat-fly Sarcophaga peregrina larva in response to a hypodermic injury or bacterial infection. This peptide is highly toxic against a broad spectrum of both Gram-positive and Gram-negative bacteria and lethal to microbes even at nanomolar concentrations. However, research needs as well as its potential use in medicine require substantial amounts of highly purified sarcotoxin. Because heterologous expression systems proved to be inefficient due to sarcotoxin sensitivity to intracellular proteases, here we propose the biosynthesis of sarcotoxin precursors in Escherichia coli cells that are highly sensitive to the mature peptide. To optimize its biosynthesis, sarcotoxin was translationally fused with proteins highly expressed in E. coli. A fusion partner and the position of sarcotoxin in the chimeric polypeptide were crucial for protecting the sarcotoxin portion of the fusion protein from proteolysis. Released after chemical cleavage of the fusion protein and purified to homogeneity, sarcotoxin displayed antibacterial activity comparable to that previously reported for the natural peptide.  相似文献   
96.
Essentially any behavior in simple and complex animals depends on neuronal network function. Currently, the best-defined system to study neuronal circuits is the nematode Caenorhabditis elegans, as the connectivity of its 302 neurons is exactly known. Individual neurons can be activated by photostimulation of Channelrhodopsin-2 (ChR2) using blue light, allowing to directly probe the importance of a particular neuron for the respective behavioral output of the network under study. In analogy, other excitable cells can be inhibited by expressing Halorhodopsin from Natronomonas pharaonis (NpHR) and subsequent illumination with yellow light. However, inhibiting C. elegans neurons using NpHR is difficult. Recently, proton pumps from various sources were established as valuable alternative hyperpolarizers. Here we show that archaerhodopsin-3 (Arch) from Halorubrum sodomense and a proton pump from the fungus Leptosphaeria maculans (Mac) can be utilized to effectively inhibit excitable cells in C. elegans. Arch is the most powerful hyperpolarizer when illuminated with yellow or green light while the action spectrum of Mac is more blue-shifted, as analyzed by light-evoked behaviors and electrophysiology. This allows these tools to be combined in various ways with ChR2 to analyze different subsets of neurons within a circuit. We exemplify this by means of the polymodal aversive sensory ASH neurons, and the downstream command interneurons to which ASH neurons signal to trigger a reversal followed by a directional turn. Photostimulating ASH and subsequently inhibiting command interneurons using two-color illumination of different body segments, allows investigating temporal aspects of signaling downstream of ASH.  相似文献   
97.
The fresh-cut produce industry has been the fastest-growing portion of the food retail market during the past 10 years, providing consumers with convenient and nutritious food. However, fresh-cut fruits and vegetables raise food safety concerns, because exposed tissue may be colonized more easily by pathogenic bacteria than intact produce. This is due to the higher availability of nutrients on cut surfaces and the greater potential for contamination because of the increased amount of handling. We found that applied Listeria monocytogenes populations survived and increased only slightly on fresh-cut Red Delicious apples stored at 10°C but increased significantly on fresh-cut honeydew melons stored at 10°C over 7 days. In addition, we examined the effect of lytic, L. monocytogenes-specific phages via two phage application methods, spraying and pipetting, on L. monocytogenes populations in artificially contaminated fresh-cut melons and apples. The phage mixture reduced L. monocytogenes populations by 2.0 to 4.6 log units over the control on honeydew melons. On apples, the reduction was below 0.4 log units. In combination with nisin (a bacteriocin), the phage mixture reduced L. monocytogenes populations by up to 5.7 log units on honeydew melon slices and by up to 2.3 log units on apple slices compared to the control. Nisin alone reduced L. monocytogenes populations by up to 3.2 log units on honeydew melon slices and by up to 2.0 log units on apple slices compared to the control. The phage titer was stable on melon slices, but declined rapidly on apple slices. The spray application of the phage and phage plus nisin reduced the bacterial numbers at least as much as the pipette application. The effectiveness of the phage treatment also depended on the initial concentration of L. monocytogenes.  相似文献   
98.
Responses of 117 single- or multi-units in the auditory cortex (AC) of bats (Myotis lucifugus) to tone bursts of different stimulus durations (1– 400 ms) were studied over a wide range of stimulus intensities to determine how stimulus duration is represented in the AC. 36% of AC neurons responded more strongly to short stimulus durations showing short-pass duration response functions, 31% responded equally to all pulse durations (i.e., all-pass), 18% responded preferentially to stimuli having longer durations (i.e., long-pass), and 15% responded to a narrow range of stimulus durations (i.e., band-pass). Neurons showing long-pass and short-pass duration response functions were narrowly distributed within two horizontal slabs of the cortex, over the rostrocaudal extent of the AC. The effects of stimulus level on duration selectivity were evaluated for 17 AC neurons. For 65% of these units, an increase in stimulus intensity resulted in a progressive decrease in the best duration. In light of the unusual intensity-dependent duration responses of AC neurons, we hypothesized that the response selectivities of AC neurons is different from that in the brainstem. This hypothesis was validated by results of study of the duration response characteristics of single neurons in the inferior colliculus. Accepted: 8 November 1996  相似文献   
99.
100.
In sequencing-by-hybridization methods, the nucleotide sequence of a nucleic acid is reconstructed by overlapping oligonucleotides capable of hybridizing with the nucleic acid. In their present form, the methods are hardly suitable for sequencing of long nucleic acid molecules because of the occurrence of non-unique overlaps between the oligonucleotides, and similarly to the conventional sequencing methods, it is necessary to obtain an individual molecule. In the method described here, most ambiguities in reconstruction of a sequence from the constituent oligonucleotides are eliminated by preparing on oligonucleotide arrays and separate surveying of the nucleic acid nested partials. This enables longer nucleic acids to be sequenced, and results in a high redundancy of the input data allowing most hybridization errors to be eliminated by algorithmic means. Furthermore, large pools of nucleic acid strands can be sequenced directly, without isolating individual strands.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号