首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20390篇
  免费   1889篇
  国内免费   13篇
  22292篇
  2023年   121篇
  2022年   300篇
  2021年   564篇
  2020年   266篇
  2019年   388篇
  2018年   436篇
  2017年   340篇
  2016年   586篇
  2015年   985篇
  2014年   1020篇
  2013年   1400篇
  2012年   1598篇
  2011年   1565篇
  2010年   967篇
  2009年   844篇
  2008年   1212篇
  2007年   1192篇
  2006年   1073篇
  2005年   1015篇
  2004年   914篇
  2003年   852篇
  2002年   823篇
  2001年   197篇
  2000年   153篇
  1999年   178篇
  1998年   168篇
  1997年   140篇
  1996年   116篇
  1995年   110篇
  1994年   116篇
  1993年   112篇
  1992年   119篇
  1991年   107篇
  1990年   97篇
  1989年   85篇
  1988年   92篇
  1987年   72篇
  1986年   66篇
  1985年   89篇
  1984年   96篇
  1983年   62篇
  1982年   81篇
  1981年   72篇
  1980年   67篇
  1979年   77篇
  1978年   54篇
  1977年   60篇
  1976年   65篇
  1975年   70篇
  1973年   55篇
排序方式: 共有10000条查询结果,搜索用时 14 毫秒
121.
122.
A wide range of protein acyl modifications has been identified on enzymes across various metabolic processes; however, the impact of these modifications remains poorly understood. Protein glutarylation is a recently identified modification that can be nonenzymatically driven by glutaryl-CoA. In mammalian systems, this unique metabolite is only produced in the lysine and tryptophan oxidative pathways. To better understand the biology of protein glutarylation, we studied the relationship between enzymes within the lysine/tryptophan catabolic pathways, protein glutarylation, and regulation by the deglutarylating enzyme sirtuin 5 (SIRT5). Here, we identify glutarylation on the lysine oxidation pathway enzyme glutaryl-CoA dehydrogenase (GCDH) and show increased GCDH glutarylation when glutaryl-CoA production is stimulated by lysine catabolism. Our data reveal that glutarylation of GCDH impacts its function, ultimately decreasing lysine oxidation. We also demonstrate the ability of SIRT5 to deglutarylate GCDH, restoring its enzymatic activity. Finally, metabolomic and bioinformatic analyses indicate an expanded role for SIRT5 in regulating amino acid metabolism. Together, these data support a feedback loop model within the lysine/tryptophan oxidation pathway in which glutaryl-CoA is produced, in turn inhibiting GCDH function via glutaryl modification of GCDH lysine residues and can be relieved by SIRT5 deacylation activity.  相似文献   
123.
We describe microarrays of oligosaccharides as neoglycolipids and their robust display on nitrocellulose. The arrays are obtained from glycoproteins, glycolipids, proteoglycans, polysaccharides, whole organs, or from chemically synthesized oligosaccharides. We show that carbohydrate-recognizing proteins single out their ligands not only in arrays of homogeneous oligosaccharides but also in arrays of heterogeneous oligosaccharides. Initial applications have revealed new findings, including: (i) among O-glycans in brain, a relative abundance of the Lewis(x) sequence based on N-acetyllactosamine recognized by anti-L5, and a paucity of the Lewis(x) sequence based on poly-N-acetyllactosamine recognized by anti-SSEA-1; (ii) insights into chondroitin sulfate oligosaccharides recognized by an antiserum and an antibody (CS-56) to chondroitin sulfates; and (iii) binding of the cytokine interferon-gamma (IFN-gamma) and the chemokine RANTES to sulfated sequences such as HNK-1, sulfo-Lewis(x), and sulfo-Lewis(a), in addition to glycosaminoglycans. The approach opens the way for discovering new carbohydrate-recognizing proteins in the proteome and for mapping the repertoire of carbohydrate recognition structures in the glycome.  相似文献   
124.
Pathogen access to host nutrients in infected tissues is fundamental for pathogen growth and virulence, disease progression, and infection control. However, our understanding of this crucial process is still rather limited because of experimental and conceptual challenges. Here, we used proteomics, microbial genetics, competitive infections, and computational approaches to obtain a comprehensive overview of Salmonella nutrition and growth in a mouse typhoid fever model. The data revealed that Salmonella accessed an unexpectedly diverse set of at least 31 different host nutrients in infected tissues but the individual nutrients were available in only scarce amounts. Salmonella adapted to this situation by expressing versatile catabolic pathways to simultaneously exploit multiple host nutrients. A genome-scale computational model of Salmonella in vivo metabolism based on these data was fully consistent with independent large-scale experimental data on Salmonella enzyme quantities, and correctly predicted 92% of 738 reported experimental mutant virulence phenotypes, suggesting that our analysis provided a comprehensive overview of host nutrient supply, Salmonella metabolism, and Salmonella growth during infection. Comparison of metabolic networks of other pathogens suggested that complex host/pathogen nutritional interfaces are a common feature underlying many infectious diseases.  相似文献   
125.
Na(+)-K(+)-ATPase is an integral membrane protein crucial for the maintenance of ion homeostasis and skeletal muscle contractibility. Skeletal muscle Na(+)-K(+)-ATPase content displays remarkable plasticity in response to long-term increase in physiological demand, such as exercise training. However, the adaptations in Na(+)-K(+)-ATPase function in response to a suddenly decreased and/or habitually low level of physical activity, especially after a spinal cord injury (SCI), are incompletely known. We tested the hypothesis that skeletal muscle content of Na(+)-K(+)-ATPase and the associated regulatory proteins from the FXYD family is altered in SCI patients in a manner dependent on the severity of the spinal cord lesion and postinjury level of physical activity. Three different groups were studied: 1) six subjects with chronic complete cervical SCI, 2) seven subjects with acute, complete cervical SCI, and 3) six subjects with acute, incomplete cervical SCI. The individuals in groups 2 and 3 were studied at months 1, 3, and 12 postinjury, whereas individuals with chronic SCI were compared with an able-bodied control group. Chronic complete SCI was associated with a marked decrease in [(3)H]ouabain binding site concentration in skeletal muscle as well as reduced protein content of the α(1)-, α(2)-, and β(1)-subunit of the Na(+)-K(+)-ATPase. In line with this finding, expression of the Na(+)-K(+)-ATPase α(1)- and α(2)-subunits progressively decreased during the first year after complete but not after incomplete SCI. The expression of the regulatory protein phospholemman (PLM or FXYD1) was attenuated after complete, but not incomplete, cervical SCI. In contrast, FXYD5 was substantially upregulated in patients with complete SCI. In conclusion, the severity of the spinal cord lesion and the level of postinjury physical activity in patients with SCI are important factors controlling the expression of Na(+)-K(+)-ATPase and its regulatory proteins PLM and FXYD5.  相似文献   
126.
127.
The spacer-armed trisaccharide, Neu5Gc-alpha-(2-->3')-lactosamine 3-aminopropyl glycoside, was synthesized by regio- and stereoselective sialylation of the suitably protected triol acceptor, 3-trifluoroacetamidopropyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-4-O-(6-O-benzyl-beta-D-galactopyranosyl)-beta-D-glucopyranoside, with the donor methyl [phenyl 5-acetoxyacetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio-D-glycero-alpha,beta-D-galacto-2-nonulopyranosid]onate. The donor was obtained, in turn, from methyl [phenyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio-D-glycero-alpha,beta-D-galacto-2-nonulopyranosid]onate by N-tert-butoxycarbonylation of the acetamido group followed by total N- and O-deacetylation, per-O-acetylation, subsequent Boc group removal, and N-acetoxyacetylation.  相似文献   
128.
Senescence of adipose precursor cells (APC) impairs adipogenesis, contributes to the age‐related subcutaneous adipose tissue (SAT) dysfunction, and increases risk of type 2 diabetes (T2D). First‐degree relatives of T2D individuals (FDR) feature restricted adipogenesis, reflecting the detrimental effects of APC senescence earlier in life and rendering FDR more vulnerable to T2D. Epigenetics may contribute to these abnormalities but the underlying mechanisms remain unclear. In previous methylome comparison in APC from FDR and individuals with no diabetes familiarity (CTRL), ZMAT3 emerged as one of the top‐ranked senescence‐related genes featuring hypomethylation in FDR and associated with T2D risk. Here, we investigated whether and how DNA methylation changes at ZMAT3 promote early APC senescence. APC from FDR individuals revealed increases in multiple senescence markers compared to CTRL. Senescence in these cells was accompanied by ZMAT3 hypomethylation, which caused ZMAT3 upregulation. Demethylation at this gene in CTRL APC led to increased ZMAT3 expression and premature senescence, which were reverted by ZMAT3 siRNA. Furthermore, ZMAT3 overexpression in APC determined senescence and activation of the p53/p21 pathway, as observed in FDR APC. Adipogenesis was also inhibited in ZMAT3‐overexpressing APC. In FDR APC, rescue of ZMAT3 methylation through senolytic exposure simultaneously downregulated ZMAT3 expression and improved adipogenesis. Interestingly, in human SAT, aging and T2D were associated with significantly increased expression of both ZMAT3 and the P53 senescence marker. Thus, DNA hypomethylation causes ZMAT3 upregulation in FDR APC accompanied by acquisition of the senescence phenotype and impaired adipogenesis, which may contribute to FDR predisposition for T2D.  相似文献   
129.
Ligand-induced translocation of epidermal growth factor receptors (EGF-R) to the nucleus of NR6/HER fibroblasts has been studied by immunoelectron microscopy. Following treatment of NR6/HER cells with epidermal growth factor (EGF) for 1 h, there was a decrease in EGF-R labeling at the plasma membrane and a corresponding increase in EGF-R in the nucleus. This was preceded by a rapid and sustained increase in nuclear phosphotyrosine content, detectable within 2 min of EGF treatment. EGF-R translocation into the nucleus was completely prevented by 18 h serum starvation prior to treatment with EGF. These results indicate that translocation of EGF-R to the nucleus is a controlled process and they suggest theft EGF-R may directly influence nuclear function.  相似文献   
130.
A major challenge for strategies to combat the human malaria parasite Plasmodium vivax is the presence of hypnozoites in the liver. These dormant forms can cause renewed clinical disease after reactivation through unknown mechanisms. The closely related non-human primate malaria P. cynomolgi is a frequently used model for studying hypnozoite-induced relapses. Here we report the generation of the first transgenic P. cynomolgi parasites that stably express fluorescent markers in liver stages by transfection with novel DNA-constructs containing a P. cynomolgi centromere. Analysis of fluorescent liver stages in culture identified, in addition to developing liver-schizonts, uninucleate persisting parasites that were atovaquone resistant but primaquine sensitive, features associated with hypnozoites. We demonstrate that these hypnozoite-forms could be isolated by fluorescence-activated cell sorting. The fluorescently-tagged parasites in combination with FACS-purification open new avenues for a wide range of studies for analysing hypnozoite biology and reactivation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号