首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6417篇
  免费   526篇
  国内免费   7篇
  6950篇
  2023年   43篇
  2022年   108篇
  2021年   239篇
  2020年   120篇
  2019年   159篇
  2018年   159篇
  2017年   120篇
  2016年   238篇
  2015年   373篇
  2014年   384篇
  2013年   458篇
  2012年   562篇
  2011年   551篇
  2010年   341篇
  2009年   274篇
  2008年   388篇
  2007年   349篇
  2006年   293篇
  2005年   284篇
  2004年   290篇
  2003年   237篇
  2002年   274篇
  2001年   42篇
  2000年   23篇
  1999年   46篇
  1998年   37篇
  1997年   39篇
  1996年   33篇
  1995年   22篇
  1994年   21篇
  1993年   23篇
  1992年   19篇
  1991年   10篇
  1990年   8篇
  1989年   11篇
  1988年   8篇
  1987年   14篇
  1985年   14篇
  1983年   8篇
  1982年   11篇
  1981年   21篇
  1980年   11篇
  1978年   10篇
  1976年   9篇
  1975年   12篇
  1974年   8篇
  1973年   9篇
  1968年   8篇
  1966年   11篇
  1962年   8篇
排序方式: 共有6950条查询结果,搜索用时 15 毫秒
991.
Interleukin 6 plays a key role in mediating inflammatory reactions in autoimmune diseases and cancer, where it is also involved in metastasis and tissue invasion. Neutralizing antibodies against IL-6 and its receptor have been approved for therapeutic intervention or are in advanced stages of clinical development. Here we describe the crystal structures of the complexes of IL-6 with two Fabs derived from conventional camelid antibodies that antagonize the interaction between the cytokine and its receptor. The x-ray structures of these complexes provide insights into the mechanism of neutralization by the two antibodies and explain the very high potency of one of the antibodies. It effectively competes for binding to the cytokine with IL-6 receptor (IL-6R) by using side chains of two CDR residues filling the site I cavities of IL-6, thus mimicking the interactions of Phe229 and Phe279 of IL-6R. In the first antibody, a HCDR3 tryptophan binds similarly to hot spot residue Phe279. Mutation of this HCDR3 Trp residue into any other residue except Tyr or Phe significantly weakens binding of the antibody to IL-6, as was also observed for IL-6R mutants of Phe279. In the second antibody, the side chain of HCDR3 valine ties into site I like IL-6R Phe279, whereas a LCDR1 tyrosine side chain occupies a second cavity within site I and mimics the interactions of IL-6R Phe229.  相似文献   
992.
993.
Easy-to-use macromolecular viewers, such as UCSF Chimera, are a standard tool in structural biology. They allow rendering and performing geometric operations on large complexes, such as viruses and ribosomes. Dynamical simulation codes enable modeling of conformational changes, but may require considerable time and many CPUs. There is an unmet demand from structural and molecular biologists for software in the middle ground, which would allow visualization combined with quick and interactive modeling of conformational changes, even of large complexes. This motivates MMB-GUI. MMB uses an internal-coordinate, multiscale approach, yielding as much as a 2000-fold speedup over conventional simulation methods. We use Chimera as an interactive graphical interface to control MMB. We show how this can be used for morphing of macromolecules that can be heterogeneous in biopolymer type, sequence, and chain count, accurately recapitulating structural intermediates. We use MMB-GUI to create a possible trajectory of EF-G mediated gate-passing translocation in the ribosome, with all-atom structures. This shows that the GUI makes modeling of large macromolecules accessible to a wide audience. The morph highlights similarities in tRNA conformational changes as tRNA translocates from A to P and from P to E sites and suggests that tRNA flexibility is critical for translocation completion.  相似文献   
994.
995.
996.
The ability to generate human induced pluripotent stem cells (iPSCs) has opened new avenues for human disease modelling and therapy. The aim of our study was to determine research participants’ understanding of the information given when donating skin biopsies for the generation of patient-specific iPSCs. A customised 35-item questionnaire based on previous iPSC consent guidelines was sent to participants who had previously donated samples for iPSC research. The questionnaire asked pertinent demographic details, participants' motivation to take part in iPSC research and their attitudes towards related ethical issues. 234 participants were contacted with 141 (60.3 %) complete responses received. The median duration between recruitment and follow-up questioning was 313 days (range 10–573 days). The majority of participants (n = 129, 91.5 %) believed they understood what a stem cell was; however, only 22 (16.1 %) correctly answered questions related to basic stem cell properties. We found no statistically significant difference in responses from participants with different levels of education, or those with a health sciences background. The poor understanding amongst participants of iPSC research is unlikely to be unique to our study and may impact future research if not improved. As such, there is a need to develop an easily understood yet comprehensive consent process to ensure ongoing ethical progress of iPSC biobanking.  相似文献   
997.
A combination of mutagenesis, calorimetry, kinetics, and small-angle X-ray scattering (SAXS) has been used to study the mechanism of ligand binding energy propagation through human cytochrome P450 reductase (CPR). Remarkably, the energetics of 2',5'-ADP binding to R597 at the FAD-binding domain are affected by mutations taking place at an interdomain loop located 60 A away. Either deletion of a 7 amino acid long segment (T236-G237-E238-E239-S240-S241-I242) or its replacement by poly-proline repeats (5 and 10 residues) results in a significant increase in 2',5'-ADP enthalpy of binding (DeltaHB). This is accompanied by a decrease in the number of thermodynamic microstates available for the ligand-CPR complex. Moreover, the estimated heat capacity change (DeltaCp) for this interaction changes from -220 cal mol-1 K-1 in the wild-type enzyme to -580 cal mol-1 K-1 in the deletion mutant. Pre-steady-state kinetics measurements reveal a 50-fold decrease in the microscopic rate for interdomain (FAD --> FMN) electron transfer in the deletion mutant (kobs = 0.4 s-1). Multiple turnover cytochome c reduction assays indicate that these mutations impair the ability of the FMN-binding domain to shuttle electrons from the FAD-binding domain to the cytochrome partner. Binding of 2',5'-ADP to wild-type CPR triggers a large-scale structural rearrangement resulting in the complex having a more compact domain organization, and the maximum molecular dimension (Dmax) decreases from 110 A in ligand-free enzyme to 100 A in the ligand-bound CPR. The SAXS experiments also demonstrate that what is affected by the mutations is indeed the relative diffusional motion of the domains. Furthemore, ab initio shape reconstruction and homology modeling would suggest that-in the deletion mutant-hindering of domain motion occurs concomitantly with dimerization. The results presented here show that the energetics of this highly localized interaction (2',5'-ADP binding) have a global character, and are highly sensitive to functional structural dynamics involving distal domains. These findings support early theoretical studies which postulate a single protein molecule to be a real, independent thermodynamic ensemble.  相似文献   
998.
In cardiac ventricular myocytes, events crucial to excitation-contraction coupling take place in spatially restricted microdomains known as dyads. The movement and dynamics of calcium (Ca2+) ions in the dyad have often been described by assigning continuously valued Ca2+ concentrations to one or more dyadic compartments. However, even at its peak, the estimated number of free Ca2+ ions present in a single dyad is small (approximately 10-100 ions). This in turn suggests that modeling dyadic calcium dynamics using laws of mass action may be inappropriate. In this study, we develop a model of stochastic molecular signaling between L-type Ca2+ channels (LCCs) and ryanodine receptors (RyR2s) that describes: a), known features of dyad geometry, including the space-filling properties of key dyadic proteins; and b), movement of individual Ca2+ ions within the dyad, as driven by electrodiffusion. The model enables investigation of how local Ca2+ signaling is influenced by dyad structure, including the configuration of key proteins within the dyad, the location of Ca2+ binding sites, and membrane surface charges. Using this model, we demonstrate that LCC-RyR2 signaling is influenced by both the stochastic dynamics of Ca2+ ions in the dyad as well as the shape and relative positioning of dyad proteins. Results suggest the hypothesis that the relative placement and shape of the RyR2 proteins helps to "funnel" Ca2+ ions to RyR2 binding sites, thus increasing excitation-contraction coupling gain.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号