首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   5篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   3篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   7篇
  2007年   9篇
  2006年   9篇
  2005年   6篇
  2004年   5篇
  2003年   7篇
  2002年   4篇
  2001年   5篇
  2000年   5篇
  1999年   12篇
  1998年   2篇
  1997年   5篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
排序方式: 共有97条查询结果,搜索用时 15 毫秒
81.
Tyrosine-rich conopeptides affect voltage-gated K+ channels   总被引:1,自引:0,他引:1  
Two venom peptides, CPY-Pl1 (EU000528) and CPY-Fe1 (EU000529), characterized from the vermivorous marine snails Conus planorbis and Conus ferrugineus, define a new class of conopeptides, the conopeptide Y (CPY) family. The peptides have no disulfide cross-links and are 30 amino acids long; the high content of tyrosine is unprecedented for any native gene product. The CPY peptides were chemically synthesized and shown to be biologically active upon injection into both mice and Caenorhabditis elegans; activity on mammalian Kv1 channel isoforms was demonstrated using an oocyte heterologous expression system, and selectivity for Kv1.6 was found. NMR spectroscopy revealed that the peptides were unstructured in aqueous solution; however, a helical region including residues 12-18 for one peptide, CPY-Pl1, formed in trifluoroethanol buffer. Clones obtained from cDNA of both species encoded prepropeptide precursors that shared a unique signal sequence, indicating that these peptides are encoded by a novel gene family. This is the first report of tyrosine-rich bioactive peptides in Conus venom.  相似文献   
82.
Delta-atracotoxin-Ar1a (delta-ACTX-Ar1a) is the major polypeptide neurotoxin isolated from the venom of the male Sydney funnel-web spider, Atrax robustus. This neurotoxin targets both insect and mammalian voltage-gated sodium channels, where it competes with scorpion alpha-toxins for neurotoxin receptor site-3 to slow sodium-channel inactivation. Progress in characterizing the structure and mechanism of action of this toxin has been hampered by the limited supply of pure toxin from natural sources. In this paper, we describe the first successful chemical synthesis and oxidative refolding of the four-disulfide bond containing delta-ACTX-Ar1a. This synthesis involved solid-phase Boc chemistry using double coupling, followed by oxidative folding of purified peptide using a buffer of 2 M GdnHCl and glutathione/glutathiol in a 1:1 mixture of 2-propanol (pH 8.5). Successful oxidation and refolding was confirmed using both chemical and pharmacological characterization. Ion spray mass spectrometry was employed to confirm the molecular weight. (1)H NMR analysis showed identical chemical shifts for native and synthetic toxins, indicating that the synthetic toxin adopts the native fold. Pharmacological studies employing whole-cell patch clamp recordings from rat dorsal root ganglion neurons confirmed that synthetic delta-ACTX-Ar1a produced a slowing of the sodium current inactivation and hyperpolarizing shifts in the voltage-dependence of activation and inactivation similar to native toxin. Under current clamp conditions, we show for the first time that delta-ACTX-Ar1a produces spontaneous repetitive plateau potentials underlying the clinical symptoms seen during envenomation. This successful oxidative refolding of synthetic delta-ACTX-Ar1a paves the way for future structure-activity studies to determine the toxin pharmacophore.  相似文献   
83.
chi-Conopeptide MrIA (chi-MrIA) is a 13-residue peptide contained in the venom of the predatory marine snail Conus marmoreus that has been found to inhibit the norepinephrine transporter (NET). We investigated whether chi-MrIA targeted the other members of the monoamine transporter family and found no effect of the peptide (100 microM) on the activity of the dopamine transporter and the serotonin transporter, indicating a high specificity of action. The binding of the NET inhibitors, [3H]nisoxetine and [3H]mazindol, to the expressed rat and human NET was inhibited by chi-MrIA with the conopeptide displaying a slight preference toward the rat isoform. For both radioligands, saturation binding studies showed that the inhibition by chi-MrIA was competitive in nature. It has previously been demonstrated that chi-MrIA does not compete with norepinephrine, unlike classically described NET inhibitors such as nisoxetine and mazindol that do. This pattern of behavior implies that the binding site for chi-MrIA on the NET overlaps the antidepressant binding site and is wholly distinct from the substrate binding site. The inhibitory effect of chi-MrIA was found to be dependent on Na+ with the conopeptide becoming a less effective blocker of [3H]norepinephrine by the NET under the conditions of reduced extracellular Na+. In this respect, chi-MrIA is similar to the antidepressant inhibitors of the NET. The structure-activity relationship of chi-MrIA was investigated by alanine scanning. Four residues in the first cysteine-bracketed loop of chi-MrIA and a His in loop 2 played a dominant role in the interaction between chi-MrIA and the NET. H alpha chemical shift comparisons indicated that side-chain interactions at these key positions were structurally perturbed by the replacement of Gly-6. From these data, we present a model of the structure of chi-MrIA that shows the relative orientation of the key binding residues. This model provides a new molecular caliper for probing the structure of the NET.  相似文献   
84.
alpha-Conotoxin AuIB and a disulfide bond variant of AuIB have been synthesized to determine the role of disulfide bond connectivity on structure and activity. Both of these peptides contain the 15 amino acid sequence GCCSYPPCFATNPDC, with the globular (native) isomer having the disulfide connectivity Cys(2-8 and 3-15) and the ribbon isomer having the disulfide connectivity Cys(2-15 and 3-8). The solution structures of the peptides were determined by NMR spectroscopy, and their ability to block the nicotinic acetylcholine receptors on dissociated neurons of the rat parasympathetic ganglia was examined. The ribbon disulfide isomer, although having a less well defined structure, is surprisingly found to have approximately 10 times greater potency than the native peptide. To our knowledge this is the first demonstration of a non-native disulfide bond isomer of a conotoxin exhibiting greater biological activity than the native isomer.  相似文献   
85.
The primary sequence and three-dimensional structure of a novel peptide toxin isolated from the Australian funnel-web spider Hadronyche infensa sp. is reported. ACTX-Hi:OB4219 contains 38 amino acids, including eight-cysteine residues that form four disulfide bonds. The connectivities of these disulfide bonds were previously unknown but have been unambiguously determined in this study. Three of these disulfide bonds are arranged in an inhibitor cystine-knot (ICK) motif, which is observed in a range of other disulfide-rich peptide toxins. The motif incorporates an embedded ring in the structure formed by two of the disulfides and their connecting backbone segments penetrated by a third disulfide bond. Using NMR spectroscopy, we determined that despite the isolation of a single native homologous product by RP-HPLC, ACTX-Hi:OB4219 possesses two equally populated conformers in solution. These two conformers were determined to arise from cis/trans isomerization of the bond preceding Pro30. Full assignment of the NMR spectra for both conformers allowed for the calculation of their structures, revealing the presence of a triple-stranded antiparallel beta sheet consistent with the inhibitor cystine-knot (ICK) motif.  相似文献   
86.
The C-type natriuretic peptide from the platypus venom (OvCNP) exists in two forms, OvCNPa and OvCNPb, whose amino acid sequences are identical. Through the use of nuclear magnetic resonance, mass spectrometry, and peptidase digestion studies, we discovered that OvCNPb incorporates a D-amino acid at position 2 in the primary structure. Peptides containing a D-amino acid have been found in lower forms of organism, but this report is the first for a D-amino acid in a biologically active peptide from a mammal. The result implies the existence of a specific isomerase in the platypus that converts an L-amino acid residue in the protein to the D-configuration.  相似文献   
87.
The proteome of bovine milk is dominated by just six gene products that constitute approximately 95% of milk protein. Nonetheless, over 150 protein spots can be readily detected following two-dimensional electrophoresis of whole milk. Many of these represent isoforms of the major gene products produced through extensive post-translational modification. Peptide mass fingerprinting of in-gel tryptic digests (using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) in reflectron mode with alpha-cyano-4-hydroxycinnamic acid as the matrix) identified 10 forms of kappa-casein with isoelectric point (pI) values from 4.47 to 5.81, but could not distinguish between them. MALDI-TOF MS in linear mode, using sinapinic acid as the matrix, revealed a large tryptic peptide (mass > 5990 Da) derived from the C-terminus that contained all the known sites of genetic variance, phosphorylation and glycosylation. Two genetic variants present as singly or doubly phosphorylated forms could be distinguished using mass data alone. Glycoforms containing a single acidic tetrasaccharide were also identified. The differences in electrophoretic mobility of these isoforms were consistent with the addition of the acidic groups. While more extensively glycosylated forms were also observed, substantial loss of N-acetylneuraminic acid from the glycosyl group was evident in the MALDI spectra such that ions corresponding to the intact glycopeptide were not observed and assignment of the glycoforms was not possible. However, by analysing the pI shifts observed on the two-dimensional gels in conjunction with the MS data, the number of N-acetylneuraminic acid residues, and hence the glycoforms present, could be determined.  相似文献   
88.
μ-Conotoxins are peptide blockers of voltage-gated sodium channels (sodium channels), inhibiting tetrodotoxin-sensitive neuronal (Na(v) 1.2) and skeletal (Na(v) 1.4) subtypes with highest affinity. Structure-activity relationship studies of μ-conotoxins SIIIA, TIIIA, and KIIIA have shown that it is mainly the C-terminal part of the three-loop peptide that is involved in binding to the sodium channel. In this study, we characterize the effect of N- and C-terminal extensions of μ-conotoxins SIIIA, SIIIB, and TIIIA on their potency and selectivity for neuronal versus muscle sodium channels. Interestingly, extending the N- or C-terminal of the peptide by introducing neutral, positive, and/or negatively charged residues, the selectivity of the native peptide can be altered from neuronal to skeletal and the other way around. The results from this study provide further insight into the binding profile of μ-conotoxins at voltage-gated sodium channels, revealing that binding interactions outside the cysteine-stablilized loops can contribute to μ-conotoxin affinity and sodium channel selectivity.  相似文献   
89.
The hERG K+ channel undergoes rapid inactivation that is mediated by ‘collapse’ of the selectivity filter, thereby preventing ion conduction. Previous studies have suggested that the pore-helix of hERG may be up to seven residues longer than that predicted by homology with channels with known crystal structures. In the present work, we determined structural features of a peptide from the pore loop region of hERG (residues 600–642) in both sodium dodecyl sulfate (SDS) and dodecyl phosphocholine (DPC) micelles using NMR spectroscopy. A complete structure calculation was done for the peptide in DPC, and the localization of residues inside the micelles were analysed by using a water-soluble paramagnetic reagent with both DPC and SDS micelles. The pore-helix in the hERG peptide was only two–four residues longer at the N-terminus, compared with the pore helices seen in the crystal structures of other K+ channels, rather than the seven residues suggested from previous NMR studies. The helix in the peptide spanned the same residues in both micellar environments despite a difference in the localization inside the respective micelles. To determine if the extension of the length of the helix was affected by the hydrophobic environment in the two types of micelles, we compared NMR and X-ray crystallography results from a homologous peptide from the voltage gated potassium channel, KcsA.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号