首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   5篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   3篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   7篇
  2007年   9篇
  2006年   9篇
  2005年   6篇
  2004年   5篇
  2003年   7篇
  2002年   4篇
  2001年   5篇
  2000年   5篇
  1999年   12篇
  1998年   2篇
  1997年   5篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
排序方式: 共有97条查询结果,搜索用时 15 毫秒
51.
Using assay-directed fractionation of Conus geographus crude venom, we isolated alpha-conotoxin GID, which acts selectively at neuronal nicotinic acetylcholine receptors (nAChRs). Unlike other neuronally selective alpha-conotoxins, alpha-GID has a four amino acid N-terminal tail, gamma-carboxyglutamate (Gla), and hydroxyproline (O) residues, and lacks an amidated C terminus. GID inhibits alpha 7 and alpha 3 beta 2 nAChRs with IC(50) values of 5 and 3 nm, respectively and is at least 1000-fold less potent at the alpha 1 beta 1 gamma delta, alpha 3 beta 4, and alpha 4 beta 4 combinations. GID also potently inhibits the alpha 4 beta 2 subtype (IC(50) of 150 nm). Deletion of the N-terminal sequence (GID Delta 1-4) significantly decreased activity at the alpha 4 beta 2 nAChR but hardly affected potency at alpha 3 beta 2 and alpha 7 nAChRs, despite enhancing the off-rates at these receptors. In contrast, Arg(12) contributed to alpha 4 beta 2 and alpha 7 activity but not to alpha 3 beta 2 activity. The three-dimensional structure of GID is well defined over residues 4-19 with a similar motif to other alpha-conotoxins. However, despite its influence on activity, the tail appears to be disordered in solution. Comparison of GID with other alpha 4/7-conotoxins which possess an NN(P/O) motif in loop II, revealed a correlation between increasing length of the aliphatic side-chain in position 10 (equivalent to 13 in GID) and greater alpha 7 versus alpha 3 beta 2 selectivity.  相似文献   
52.
High-resolution crystal structures are described for seven macrocycles complexed with HIV-1 protease (HIVPR). The macrocycles possess two amides and an aromatic group within 15-17 membered rings designed to replace N- or C-terminal tripeptides from peptidic inhibitors of HIVPR. Appended to each macrocycle is a transition state isostere and either an acyclic peptide, nonpeptide, or another macrocycle. These cyclic analogues are potent inhibitors of HIVPR, and the crystal structures show them to be structural mimics of acyclic peptides, binding in the active site of HIVPR via the same interactions. Each macrocycle is restrained to adopt a beta-strand conformation which is preorganized for protease binding. An unusual feature of the binding of C-terminal macrocyclic inhibitors is the interaction between a positively charged secondary amine and a catalytic aspartate of HIVPR. A bicyclic inhibitor binds similarly through its secondary amine that lies between its component N-terminal and C-terminal macrocycles. In contrast, the corresponding tertiary amine of the N-terminal macrocycles does not interact with the catalytic aspartates. The amine-aspartate interaction induces a 1.5 A N-terminal translation of the inhibitors in the active site and is accompanied by weakened interactions with a water molecule that bridges the ligand to the enzyme, as well as static disorder in enzyme flap residues. This flexibility may facilitate peptide cleavage and product dissociation during catalysis. Proteases [Aba67,95]HIVPR and [Lys7,Ile33,Aba67,95]HIVPR used in this work were shown to have very similar crystal structures.  相似文献   
53.
54.
Voltage‐gated sodium (Nav) channels are responsible for generation and propagation of action potentials throughout the nervous system. Their malfunction causes several disorders and chronic conditions including neuropathic pain. Potent subtype specific ligands are essential for deciphering the molecular mechanisms of Nav channel function and development of effective therapeutics. µ‐Conotoxin SIIIA is a potent mammalian Nav1.2 channel blocker that exhibits analgesic activity in rodents. We undertook to reengineer loop 1 through a strategy involving charge alterations and truncations which led to the development of µ‐SIIIA mimetics with novel selectivity profiles. A novel [N5K/D15A]SIIIA(3–20) mutant with enhanced net positive charge showed a dramatic increase in its Nav1.2 potency (IC50 of 0.5 nM vs. 9.6 nM for native SIIIA) though further truncations led to loss of potency. Unexpectedly, it appears that SIIIA loop 1 significantly influences its Nav channel interactions despite loop 2 and 3 residues constituting the pharmacophore. This minimal functional conotoxin scaffold may allow further development of selective NaV blockers. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 347–354, 2014.  相似文献   
55.
56.
International Journal of Peptide Research and Therapeutics -  相似文献   
57.
58.
The synthesis of proteins by native chemical ligation greatly enhances the application of chemistry to complex molecules such as proteins. The essential building blocks for this approach traditionally have been peptide-thioester segments that are linked chemoselectively in consecutive reactions. By using peptide selenoesters instead of thioesters, the ligation rate can be significantly accelerated permitting couplings at difficult sites and potentially enabling new ligation strategies. To facilitate the routine synthesis of selenoester peptides, a general and straightforward procedure has been developed that generates a suitably functionalized resin from which the desired selenoester peptide can be readily synthesized. This simple approach utilizes readily available and cheap chemical agents and enables production of peptide selenoesters of excellent quality in short time and with high recovery. In addition, the stability of peptide selenoesters was examined under different native chemical ligation conditions and compared to thioesters. Selenoesters are slightly more reactive and more susceptible to hydrolysis and aminolysis than thioesters but sufficiently stable under mildly acidic conditions (pH 6.5). Under these conditions, rapid selenoester-mediated ligation is kinetically favoured.  相似文献   
59.
The presence of d-amino-acid-containing polypeptides, defensin-like peptide (DLP)-2 and Ornithorhyncus venom C-type natriuretic peptide (OvCNP)b, in platypus venom suggested the existence of a mammalian d-amino-acid-residue isomerase(s) responsible for the modification of the all-l-amino acid precursors. We show here that this enzyme(s) is present in the venom gland extract and is responsible for the creation of DLP-2 from DLP-4 and OvCNPb from OvCNPa. The isomerisation reaction is freely reversible and under well defined laboratory conditions catalyses the interconversion of the DLPs to full equilibration. The isomerase is approximately 50-60 kDa and is inhibited by methanol and the peptidase inhibitor amastatin. This is the first known l-to-d-amino-acid-residue isomerase in a mammal.  相似文献   
60.
The caseins (alphas1, alphas2, beta, and kappa) are phosphoproteins present in bovine milk that have been studied for over a century and whose structures remain obscure. Here we describe the chemical synthesis and structure elucidation of the N-terminal segment (1-44) of bovine kappa-casein, the protein which maintains the micellar structure of the caseins. kappa-Casein (1-44) was synthesised by highly optimised Boc solid-phase peptide chemistry and characterised by mass spectrometry. Structure elucidation was carried out by circular dichroism and nuclear magnetic resonance spectroscopy. CD analysis demonstrated that the segment was ill defined in aqueous medium but in 30% trifluoroethanol it exhibited considerable helical structure. Further, NMR analysis showed the presence of a helical segment containing 26 residues which extends from Pro8 to Arg34. This is the first report which demonstrates extensive secondary structure within the casein class of proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号