首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4535篇
  免费   328篇
  2023年   26篇
  2022年   67篇
  2021年   128篇
  2020年   79篇
  2019年   96篇
  2018年   132篇
  2017年   107篇
  2016年   175篇
  2015年   253篇
  2014年   265篇
  2013年   369篇
  2012年   407篇
  2011年   389篇
  2010年   236篇
  2009年   234篇
  2008年   301篇
  2007年   253篇
  2006年   216篇
  2005年   224篇
  2004年   200篇
  2003年   183篇
  2002年   145篇
  2001年   30篇
  2000年   18篇
  1999年   25篇
  1998年   23篇
  1997年   28篇
  1996年   28篇
  1995年   23篇
  1994年   24篇
  1993年   14篇
  1992年   20篇
  1991年   15篇
  1990年   9篇
  1989年   10篇
  1988年   5篇
  1987年   7篇
  1986年   5篇
  1985年   12篇
  1984年   15篇
  1983年   3篇
  1982年   8篇
  1981年   9篇
  1980年   7篇
  1979年   8篇
  1978年   3篇
  1977年   9篇
  1976年   4篇
  1975年   3篇
  1974年   3篇
排序方式: 共有4863条查询结果,搜索用时 15 毫秒
71.
Phanerochaete chrysosporium NRRL 6361 and Pleurotus pulmonarius CBS 664.97 were tested for their ability to grow under nonsterile conditions and to degrade various aromatic hydrocarbons in an aged contaminated soil that also contained high concentrations of heavy metals. After 24 days fungal incubation, carbon-CO2 liberated, an indicator of microbial activity, reached a plateau. At the end of the incubation time (30 days), fungal colonization was clearly visible and was confirmed by ergosterol and cell organic carbon determinations. In spite of unfavorable pH (around 7.4) and the presence of heavy metals, both fungi produced Mn-peroxidase activity. In contrast, laccase and aryl-alcohol oxidase were detected only in the soil treated with P. pulmonarius CBS 664.97 and lignin-peroxidase in that with P. chrysosporium NRRL 6361. No lignin-modifying enzyme activities were present in non-inoculated soil incubated for 30 days (control microcosm). Regardless of the fungus employed, a total removal of naphtalene, tetrachlorobenzene, and dichloroaniline isomers, diphenylether and N-phenyl-1-naphtalenamine, was observed. Significant release of chloride ions was also observed in fungal-treated soil, in comparison with that recorded in the control microcosm. Both fungi led to a significant decrease in soil toxicity, as assessed using two different soil contact assays, including the Lepidium sativum L. germination test and the Collembola mortality test.  相似文献   
72.
The high-density lipoprotein apolipoprotein A-I (ApoA-I) stimulates the enzyme lecithin-cholesterol acyltransferase (LCAT) in the reverse cholesterol transport pathway. Two ApoA-I variants, Zaragoza (L144R) and Zavalla (L159P), are associated with low levels of HDL-cholesterol but normal LCAT activity. Haptoglobin interacts with ApoA-I, impairing LCAT stimulation. Synthetic peptides matching the haptoglobin-binding site of native or variant ApoA-I (native, P2a; variants, Zav-pep and Zar-pep) bound haptoglobin with different activity: Zar-pep>P2a>Zav-pep. They also differently rescued LCAT in vitro activity in the presence of haptoglobin (P2a=Zar-pep>Zav-pep). Therefore, both amino acid conversions affect haptoglobin binding and LCAT regulation. We highlight the role of haptoglobin in LCAT regulation in subjects with ApoA-I variants.  相似文献   
73.
The aim of radiotherapy is to eradicate cancer cells with ionizing radiation; tumor cell death following irradiation can be induced by several signaling pathways, most of which are triggered as a consequence of DNA damage, the primary and major relevant cell response to radiation. Several lines of evidence demonstrated that ceramide, a crucial sensor and/or effector of different signalling pathways promoting cell cycle arrest, death and differentiation, is directly involved in the molecular mechanisms underlying cellular response to irradiation. Most of the studies strongly support a direct relationship between ceramide accumulation and radiation-induced cell death, mainly apoptosis; for this reason, defining the contribution of the multiple metabolic pathways leading to ceramide formation and the causes of its dysregulated metabolism represent the main goal in order to elucidate the ceramide-mediated signaling in radiotherapy. In this review, we summarize the current knowledge concerning the different routes leading to ceramide accumulation in radiation-induced cell response with particular regard to the role of the enzymes involved in both ceramide neogenesis and catabolism. Emphasis is placed on sphingolipid breakdown as mechanism of ceramide generation activated following cell irradiation; the functional relevance of this pathway, and the role of glycosphingolipid glycohydrolases as direct targets of ionizing radiation are also discussed. These new findings add a further attractive point of investigation to better define the complex interplay between sphingolipid metabolism and radiation therapy.  相似文献   
74.
Bianchi A  Shore D 《Cell》2007,128(6):1051-1062
The maintenance of an appropriate number of telomere repeats by telomerase is essential for proper chromosome protection. The action of telomerase at the telomere terminus is regulated by opposing activities that either recruit/activate the enzyme at shorter telomeres or inhibit it at longer ones, thus achieving a stable average telomere length. To elucidate the mechanistic details of telomerase regulation we engineered specific chromosome ends in yeast so that a single telomere could be suddenly shortened and, as a consequence of its reduced length, elongated by telomerase. We show that shortened telomeres replicate early in S phase, unlike normal-length telomeres, due to the early firing of origins of DNA replication in subtelomeric regions. Early telomere replication correlates with increased telomere length and telomerase activity. These data reveal an epigenetic effect of telomere length on the activity of nearby replication origins and an unanticipated link between telomere replication timing and telomerase action.  相似文献   
75.
76.
Broadening the genetic base of crops is crucial for developing varieties to respond to global agricultural challenges such as climate change. Here, we analysed a diverse panel of 371 domesticated lines of the model crop barley to explore the genetics of crop adaptation. We first collected exome sequence data and phenotypes of key life history traits from contrasting multi‐environment common garden trials. Then we applied refined statistical methods, including some based on exomic haplotype states, for genotype‐by‐environment (G×E) modelling. Sub‐populations defined from exomic profiles were coincident with barley's biology, geography and history, and explained a high proportion of trial phenotypic variance. Clear G×E interactions indicated adaptation profiles that varied for landraces and cultivars. Exploration of circadian clock‐related genes, associated with the environmentally adaptive days to heading trait (crucial for the crop's spread from the Fertile Crescent), illustrated complexities in G×E effect directions, and the importance of latitudinally based genic context in the expression of large‐effect alleles. Our analysis supports a gene‐level scientific understanding of crop adaption and leads to practical opportunities for crop improvement, allowing the prioritisation of genomic regions and particular sets of lines for breeding efforts seeking to cope with climate change and other stresses.  相似文献   
77.
78.
A method is described for producing genetically transformed plants from explants of three scentedPelargonium spp. Transgenic hairy root lines were developed fromPelargonium spp leaf explants and microcuttings after inoculation withAgrobacterium rhizogenes strains derived from the agropine A4 strain. Hairy root lines grew prolifically on growth regulator-free medium. Transgenic shoots were regenerated from hairy roots and the plants have been successfully transferred to soil. The phenotype of regenerated plants has been characterized as having abundant root development, more leaves and internodes than the controls, short internodes and highly branched roots and aerial parts. Southern blot analyses have confirmed the transgenic nature of these plants.  相似文献   
79.
Chemical fingerprinting of commercial Pelargonium capitatum (Geraniaceae) essential oil samples of south African origin was performed by GC, GC/MS, and (13) C- and (1) H-NMR. Thirty-seven compounds were identified, among which citronellol (32.71%) and geraniol (19.58%) were the most abundant. NMR Spectra of characteristic chemicals were provided. Broad-spectrum bioactivity properties of the oil were evaluated and compared with those of commercial Thymus vulgaris essential oil with the aim to obtain a functional profile in terms of efficacy and safety. P. capitatum essential oil provides a good performance as antimicrobial, with particular efficacy against Candida albicans strains. Antifungal activity performed against dermatophyte and phytopathogen strains revealed the latter as more sensitive, while antibacterial activity was not remarkable against both Gram-positive and Gram-negative bacteria. P. capitatum oil provided a lower antioxidant activity (IC(50) ) than that expressed by thyme essential oil, both in the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and β-carotene bleaching tests. Results in photochemiluminescence (PCL) assay were negligible. To test the safety aspects of P. capitatum essential oil, mutagenic and toxicity properties were assayed by Ames test, with and without metabolic activation. Possible efficacy of P. capitatum essential oil as mutagenic protective agent against NaN(3) , 2-nitrofluorene, and 2-aminoanthracene was also assayed, providing interesting and significant antigenotoxic properties.  相似文献   
80.
ABSTRACT

This article reviews the role of microbial biofilms in infection, and the antimicrobial chemical diversity of marine macroalgae and their associated microbiomes. Antimicrobial resistance (AMR) represents one of the major health threats faced by humanity over the next few years. To prevent a global epidemic of antimicrobial-resistant infections, the discovery of new antimicrobials and antibiotics, better anti-infection strategies and diagnostics, and changes to our current use of antibiotics have all become of paramount importance. Numerous studies investigating the bioactivities of seaweed extracts as well as their secondary and primary metabolites highlight the vast biochemical diversity of seaweeds, with new modes of action making them ideal sources for the discovery of novel antimicrobial bioactive compounds of pharmaceutical interest. In recent years, researchers have focused on characterizing the endophytic and epiphytic microbiomes of various algal species in an attempt to elucidate host-microbe interactions as well as to understand the function of microbial communities. Although environmental and host-associated factors crucially shape microbial composition, microbial mutualistic and obligate symbionts are often found to play a fundamental role in regulating many aspects of host fitness involving ecophysiology and metabolism. In particular, algal ‘core’ epiphytic bacterial communities play an important role in the protection of surfaces from biofouling, pathogens and grazers through the production of bioactive metabolites. Together, marine macroalgae and their associated microbiomes represent unique biological systems offering great potential for the isolation and identification of novel compounds and strategies to counteract the rise and dissemination of AMR.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号