首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4523篇
  免费   328篇
  4851篇
  2023年   26篇
  2022年   67篇
  2021年   128篇
  2020年   79篇
  2019年   96篇
  2018年   133篇
  2017年   107篇
  2016年   175篇
  2015年   253篇
  2014年   265篇
  2013年   368篇
  2012年   407篇
  2011年   388篇
  2010年   236篇
  2009年   234篇
  2008年   301篇
  2007年   252篇
  2006年   216篇
  2005年   224篇
  2004年   200篇
  2003年   183篇
  2002年   145篇
  2001年   28篇
  2000年   15篇
  1999年   24篇
  1998年   23篇
  1997年   28篇
  1996年   28篇
  1995年   23篇
  1994年   24篇
  1993年   14篇
  1992年   20篇
  1991年   15篇
  1990年   9篇
  1989年   10篇
  1988年   4篇
  1987年   7篇
  1986年   4篇
  1985年   12篇
  1984年   14篇
  1983年   3篇
  1982年   8篇
  1981年   9篇
  1980年   7篇
  1979年   7篇
  1978年   3篇
  1977年   9篇
  1976年   4篇
  1975年   3篇
  1974年   3篇
排序方式: 共有4851条查询结果,搜索用时 0 毫秒
21.
22.
We follow up on a suggestion by Rolls and co-workers, that the effects of competitive learning should be assessed on the shape and number of spatial fields that dentate gyrus (DG) granule cells may form when receiving input from medial entorhinal cortex (mEC) grid units. We consider a simple non-dynamical model where DG units are described by a threshold-linear transfer function, and receive feedforward inputs from 1,000 mEC model grid units of various spacing, orientation and spatial phase. Feedforward weights are updated according to a Hebbian rule as the virtual rodent follows a long simulated trajectory through a single environment. Dentate activity is constrained to be very sparse. We find that indeed competitive Hebbian learning tends to result in a few active DG units with a single place field each, rounded in shape and made larger by iterative weight changes. These effects are more pronounced when produced with thousands of DG units and inputs per DG unit, which the realistic system has available, than with fewer units and inputs, in which case several DG units persists with multiple fields. The emergence of single-field units with learning is in contrast, however, to recent data indicating that most active DG units do have multiple fields. We show how multiple irregularly arranged fields can be produced by the addition of non-space selective lateral entorhinal cortex (lEC) units, which are modelled as simply providing an additional effective input specific to each DG unit. The mean number of such multiple DG fields is enhanced, in particular, when lEC and mEC inputs have overall similar variance across DG units. Finally, we show that in a restricted environment the mean size of the fields is unaltered, while their mean number is scaled down with the area of the environment.
Alessandro TrevesEmail:
  相似文献   
23.
Natural killer (NK) cells represent a highly specialized lymphoid population characterized by a potent cytolytic activity against tumor or virally infected cells. Their function is finely regulated by a series of inhibitory or activating receptors. The inhibitory receptors, specific for major histocompatibility complex (MHC) class I molecules, allow NK cells to discriminate between normal cells and cells that have lost the expression of MHC class I (e.g., tumor cells). The major receptors responsible for NK cell triggering are NKp46, NKp30, NKp44 and NKG2D. The NK-mediated lysis of tumor cells involves several such receptors, while killing of dendritic cells involves only NKp30. The target-cell ligands recognized by some receptors have been identified, but those to which major receptors bind are not yet known. Nevertheless, functional data suggest that they are primarily expressed on cells upon activation, proliferation or tumor transformation. Thus, the ability of NK cells to lyse target cells requires both the lack of surface MHC class I molecules and the expression of appropriate ligands that trigger NK receptors.  相似文献   
24.
Toxoplasma gondii possesses an apicoplast-localized, plant-type ferredoxin-NADP(+) reductase. We have cloned a [2Fe-2S] ferredoxin from the same parasite to investigate the interplay of the two redox proteins. A detailed characterization of the two purified recombinant proteins, particularly as to their interaction, has been performed. The two-protein complex was able to catalyze electron transfer from NADPH to cytochrome c with high catalytic efficiency. The redox potential of the flavin cofactor (FAD/FADH(-)) of the reductase was shown to be more positive than that of the NADP(+)/NADPH couple, thus favoring electron transfer from NADPH to yield reduced ferredoxin. The complex formation between the reductase and ferredoxins from various sources was studied both in vitro by several approaches (enzymatic activity, cross-linking, protein fluorescence quenching, affinity chromatography) and in vivo by the yeast two-hybrid system. Our data show that the two proteins yield an active complex with high affinity, strongly suggesting that the two proteins of T. gondii form a physiological redox couple that transfers electrons from NADPH to ferredoxin, which in turn is used by some reductive biosynthetic pathway(s) of the apicoplast. These data provide the basis for the exploration of this redox couple as a drug target in apicomplexan parasites.  相似文献   
25.
Forty-one Tnpho A mutants of Vibrio cholerae O1 classical strain CD81 were analyzed for their ability to interact with chitin particles, Tigriopus fulvus copepods and the Intestine 407 cell line compared to the parent strain. Thirteen mutants were less adhesive than CD81; in particular, T21, T33 and T87 were less adhesive towards all substrates and insensitive to inhibition by N-acetyl glucosamine (GlcNAc). By SDS-PAGE analysis of sarkosyl-insoluble membrane proteins (siMPs) isolated from mutants and parent, it was found that a 53 kDa siMP is missing in T21, T33 and T87 mutants. It is hypothesized that this protein might have the function to mediate adherence to GlcNAc-containing substrates both in the aquatic environment and in human intestine.  相似文献   
26.
27.
We showed previously that insertion of Synechocystis Δ12‐desaturase in salmonella's membrane alters membrane physical state (MPS), followed by the expression of stress genes causing inability to survive within murine macrophages (MΦ). Recently, we showed that expression of one membrane lipid domain (MLD) of Δ12‐desaturase (ORF200) interferes with salmonella MPS, causing loss of virulence in mice and immunoprotection. Here, we postulate that an α‐antimicrobial peptide (α‐AMP) intercalates within membrane lipids, and depending on its amino acid sequence, it does so within specific key sensors of MLD. In this study, we choose as target for a putative synthetic AMP, PhoP/PhoQ, a sensor that responds to low Mg2+ concentration. We synthesised a modified DNA fragment coding for an amino acid sequence (NUF) similar to that fragment and expressed it in salmonella typhimurium. We showed that the pattern of gene expression controlled by PhoP/PhoQ highlights dysregulation of pathways involving phospholipids biosynthesis, stress proteins and genes coding for antigens. RNA‐Seq of strain expressing ORF200 showed that the pattern of those genes is also altered here. Accumulation of NUF conferred temporary immunoprotection. This represents a powerful procedure to address synthetic α‐AMPs to a specific MLD generating live non‐virulent bacterial strains.  相似文献   
28.
29.
This study aimed to explore the 24-h patterns of stroke volume, cardiac output, and peripheral vascular resistance along with other correlated variables, such as left ventricular ejection time, ejection velocity index, thoracic fluid index, heart rate, and blood pressure. The study was performed on 12 clinically healthy subjects by means of a noninvasive beat-to-beat monitoring using the thoracic electric bioimpedance technique associated with the automated sphygmomano-metric recording. Time data series were analyzed by means of chronobiological procedures. The results documented the occurrence of a circadian rhythm for all the variables investigated, giving relevance to the beat-to-beat bioperiodicity of cardiac output and peripheral vascular resistance. Temporal quantification of the investigated variables may be useful for a better insight of the chronophysiology of the cardiovascular apparatus.  相似文献   
30.
The continuous introduction of new antineoplastic drugs and their use as complex mixture emphasize the need to carry out correct health risk assessment. The aim of this study was to evaluate genotoxic effects of antineoplastic drugs in nurses (n=25) and pharmacy technicians (n=5) employed in an oncology hospital. The nurses administered antineoplastic drugs in the day-care hospital (n=12) and in the wards (n=13), and pharmacy technicians prepared the drugs in the central pharmacy. We performed the micronucleus (MN) test with lymphocytes and exfoliated buccal cells and conducted traditional analysis of chromosomal aberrations (CA). Thirty healthy subjects were selected as controls. Monitoring of surface contamination with cyclophosphamide, 5-fluorouracil, ifosfamide, cytarabine, and gemcitabine showed the presence of detectable levels only for cyclophosphamide, 5-fluorouracil and ifosfamide. In addition, we measured the 5-fluorouracil metabolite alpha-F-betaalanine in the urine of all subjects and found significant concentrations only in 3 out of 25 nurses. The micronucleus assay with lymphocytes did not show significant differences between exposed and control groups, while the same test with exfoliated buccal cells found higher values in nurses administering antineoplastic drugs than in pharmacy employees. In the CA analysis, we detected in exposed groups a significant increase (about 2.5-fold) of structural CA, particularly breaks (up to 5.0-fold). Our results confirm the genotoxic effect of antineoplastic drugs in circulating blood lymphocytes. Moreover, in exfoliated buccal cells the data show more consistent genetic damage induced during administration of the antineoplastic drugs than during their preparation. The data also stress the use of this non-invasive sampling, to assess occupational exposure to mixture of chemicals at low doses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号