首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3684篇
  免费   245篇
  2023年   18篇
  2022年   34篇
  2021年   85篇
  2020年   57篇
  2019年   76篇
  2018年   101篇
  2017年   71篇
  2016年   128篇
  2015年   187篇
  2014年   204篇
  2013年   293篇
  2012年   328篇
  2011年   289篇
  2010年   190篇
  2009年   169篇
  2008年   271篇
  2007年   232篇
  2006年   235篇
  2005年   218篇
  2004年   169篇
  2003年   177篇
  2002年   139篇
  2001年   32篇
  2000年   20篇
  1999年   26篇
  1998年   31篇
  1997年   23篇
  1996年   24篇
  1995年   19篇
  1994年   12篇
  1993年   11篇
  1992年   11篇
  1991年   7篇
  1990年   4篇
  1989年   5篇
  1988年   2篇
  1987年   6篇
  1986年   3篇
  1984年   2篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1976年   1篇
  1973年   3篇
  1972年   2篇
排序方式: 共有3929条查询结果,搜索用时 261 毫秒
111.
112.
113.
114.
It is a widely held belief that environmental contaminants contribute to the decline of amphibian populations. By spending most of their early life in water and later stages on the land, amphibians face a constant risk of exposure to pesticides and other chemical pollutants in both aquatic and terrestrial environments. This review presents an overview of the studies carried out in Italian amphibians to highlight hazardous effects of bioaccumulation of chemical pollutants in juveniles and adults in various contaminated environments. Further, the studies in the laboratory setting assessing the effects of chemical pollutants on reproductive and developmental processes are reported. These studies and their relative references have been summarized in a tabular form. Three prominent contaminant groups were identified: herbicides, insecticides, and fungicides; and only a few works reported the effects of other chemical pollutants. Each pollutant group has been delegated to a section. All through the literature survey, it is seen that interest in this topic in Italy is very recent and sparse, where only a few anuran and caudata species and only some chemical pollutants have been studied.  相似文献   
115.
116.
Alginate fractions from Sargassum vulgare brown seaweed were characterized by (1)H NMR and fluorescence spectroscopy and by rheological measurements. The alginate extraction conditions were investigated. In order to carry out the structural and physicochemical characterization, samples extracted for 1 and 5h at 60 degrees C were further purified by re-precipitation with ethanol and denoted as SVLV (S. vulgare low viscosity) and SVHV (S. vulgare high viscosity), respectively. The M/G ratio values for SVLV and SVHV were 1.56 and 1.27, respectively, higher than the ratio for most Sargassum spp. alginates (0.19-0.82). The homopolymeric blocks F(GG) and F(MM) of these fractions characterized by (1)H NMR spectroscopy were 0.43 and 0.55 for SVHV and 0.36 and 0.58 for SVLV samples, respectively, these values typically being within 0.28-0.77 and 0.07-0.41, respectively. Therefore, the alginate samples from S. vulgare are much richer in mannuronic block structures than those from other Sargassum species. Values of M(w) for alginate samples were also calculated using intrinsic viscosity data. The M(w) value for SVLV (1.94 x 10(5)g/mol) was lower than that for SVHV (3.3 x 10(5)g/mol). Newtonian behavior was observed for a solution concentration as high as 0.7% for SVLV, while for SVHV the solutions behaved as a Newtonian fluid up to 0.5%. The optimal conditions for obtaining the alginates from S. vulgare were 60 degrees C and 5h extraction. Under these conditions, a more viscous alginate in higher yield was extracted from the seaweed biomass.  相似文献   
117.
The angiotensin I-converting enzyme (ACE) converts the decapeptide angiotensin I (Ang I) into angiotensin II by releasing the C-terminal dipeptide. A novel approach combining enzymatic and electron paramagnetic resonance (EPR) studies was developed to determine the enzyme effect on Ang I containing the paramagnetic 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC) at positions 1, 3, 8, and 9. Biological assays indicated that TOAC(1)-Ang I maintained partly the Ang I activity, and that only this derivative and the TOAC(3)-Ang I were cleaved by ACE. Quenching of Tyr(4) fluorescence by TOAC decreased with increasing distance between both residues, suggesting an overall partially extended structure. However, the local bend known to be imposed by the substituted diglycine TOAC is probably responsible for steric hindrance, not allowing the analogues containing TOAC at positions 8 and 9 to act as substrates. In some cases, although substrates and products differ by only two residues, the difference between their EPR spectral lineshapes allows monitoring the enzymatic reaction as a function of time.  相似文献   
118.
119.
120.
A procedure for analysis of melanin‐pigmented tissues based on alkaline hydrogen peroxide degradation coupled with high‐performance liquid chromatography (HPLC) ultraviolet determination of pyrrole‐2,3,5‐tricarboxylic acid (PTCA) for eumelanin and 6‐(2‐amino‐2‐carboxyethyl)‐2‐carboxy‐4‐hydroxybenzothiazole (BTCA) and 1,3‐thiazole‐2,4,5‐tricarboxylic acid for pheomelanin was recently developed. Despite advantages related to the degradation conditions and sample handling, a decrease of the reproducibility and resolution was observed after several chromatographic runs. We report herein an improved chromatographic methodology for simultaneous determination of PTCA and BTCA as representative markers of eumelanin and pheomelanin, respectively, based on the use of an octadecylsilane column with polar end‐capping with 1% formic acid (pH 2.8)/methanol as the eluant. The method requires conventional HPLC equipments and gives very good peak shapes and resolution, without need of ion pair reagents or high salt concentrations in the mobile phase. The intra‐assay precision of the analytical runs was satisfactory with CV values ≤4.0% (n = 5) for the two markers which did not exceed 8% after 50 consecutive injections on the column over 1 week. The peak area ratios at 254 and 280 nm (A280/A254: PTCA = 1.1, BTCA = 0.6) proved a valuable parameter for reliable identification of the structural markers even in the most complex degradation mixtures. The method can be applied to various eumelanin and pheomelanin pigmented tissues, including mammalian hair, skin and irides, and is amenable to be employed in population screening studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号