首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7268篇
  免费   996篇
  国内免费   1篇
  2021年   89篇
  2016年   111篇
  2015年   186篇
  2014年   197篇
  2013年   286篇
  2012年   333篇
  2011年   328篇
  2010年   211篇
  2009年   213篇
  2008年   302篇
  2007年   296篇
  2006年   264篇
  2005年   228篇
  2004年   241篇
  2003年   233篇
  2002年   244篇
  2001年   231篇
  2000年   228篇
  1999年   190篇
  1998年   74篇
  1997年   85篇
  1996年   80篇
  1995年   63篇
  1994年   72篇
  1993年   65篇
  1992年   126篇
  1991年   134篇
  1990年   152篇
  1989年   131篇
  1988年   137篇
  1987年   120篇
  1986年   126篇
  1985年   140篇
  1984年   108篇
  1983年   124篇
  1982年   98篇
  1981年   81篇
  1980年   82篇
  1979年   113篇
  1978年   87篇
  1977年   75篇
  1976年   71篇
  1975年   87篇
  1974年   85篇
  1973年   82篇
  1972年   84篇
  1971年   66篇
  1970年   86篇
  1969年   76篇
  1967年   70篇
排序方式: 共有8265条查询结果,搜索用时 15 毫秒
901.
902.
The rate-limiting step in protein secretion is folding, which occurs in the endoplasmic reticulum (ER) lumen, and almost all secreted proteins contain disulfide bonds that form in the ER and stabilize the native state. Secreted proteins unable to fold may aggregate or they may be subject to ER-associated protein degradation. To examine the fate of aberrant forms of a well characterized, disulfide-bonded secreted protein, we expressed bovine pancreatic trypsin inhibitor in yeast. Bovine pancreatic trypsin inhibitor is a single domain, 58-amino acid polypeptide containing three disulfide bonds, and yeast cells secrete the wild type protein. In contrast, the Y35L mutant, which folds rapidly but is unstable, remains soluble and is not secreted. Surprisingly, the proteolysis of Y35L is unaffected in yeast containing mutations in genes encoding factors required for ER-associated protein degradation and is stable if artificially retained in the ER. Rather, Y35L is diverted from the Golgi to the vacuole and degraded. Because only the mutant protein is quantitatively proteolyzed these data suggest that a post-ER quality control check-point diverts unstable proteins to the vacuole for degradation.  相似文献   
903.
904.
Salvia, with over 900 species from both the Old and New World, is the largest genus in the Lamiaceae. Unlike most members of the subfamily Nepetoideae to which it belongs, only two stamens are expressed in Salvia. Although the structure of these stamens is remarkably variable across the genus, generally each stamen has an elongate connective and divergent anther thecae, which form a lever mechanism important in pollination. In a preliminary investigation of infrageneric relationships within Salvia, the monophyly of the genus and its relationship to other members of the tribe Mentheae were investigated using the chloroplast DNA regions rbcL and trnL-F. Significant conclusions drawn from the data include: Salvia is not monophyletic, Rosmarinus and Perovskia together are sister to an Old World clade of Salvia, the section Audibertia is sister to subgenus Calosphace or the monotypic Asian genus Dorystaechas, and the New World members of section Heterosphace are sister to section Salviastrum. Owing to the non-monophyly of Salvia, relationships at the next clearly monophyletic level, tribe Mentheae, were investigated.  相似文献   
905.
Seed coat cells in the developing seeds of grain legumes release nutrients to the developing embryo. This occurs into an apoplastic space that separates the maternal (seed coat) and filial (embryo) generations. Protoplasts of seed coat cells from coats of Phaseolus vulgaris L. seeds were isolated and whole-cell current across their plasma membranes was characterized using the patch-clamp technique. A pulsing inward current that displayed a spontaneous activation and voltage-dependent inactivation was observed. The frequency and magnitude of the current pulses were positively dependent on cytoplasmic Cl(-) concentrations and independent of external cations. The pulse current was inhibited by DIDS and La(3+), but not by Gd(3+). Single channel events (conductance=18 pS) could be identified with the inactivating phase of the pulses. Together, these findings are consistent with the current being carried by a burst of Cl(-) efflux through Cl(-)-permeable channels that activate almost simultaneously. Neomycin caused a reversible inhibition of the pulsed current, suggesting that its activation is likely to be modulated by an IP(3)-dependent intracellular Ca(2+) release. The pharmacological profiles of Cl(-) efflux from excised seed coats were comparable with those of the Cl(-) channels in the whole cell configuration, suggesting that the Cl(-) channels may underpin Cl(-) efflux from the seed coats. Efflux of Cl(-) from the seed coats was also stimulated by hypo-osmotic treatment as was the frequency and magnitude of Cl(-) channel in whole-cell patch clamp experiments. This implies that the Cl(-) channels responsible for the pulsed Cl(-) currents are likely to be a component of the turgor-regulatory mechanism in developing bean seeds.  相似文献   
906.
It is well established that CD4(+)CD25(+) regulatory T cells (Tregs) inhibit autoimmune pathology. However, precisely how the behavior of disease-inducing T cells is altered by Tregs remains unclear. In this study we use a TCR transgenic model of diabetes to pinpoint how pathogenic CD4 T cells are modified by Tregs in vivo. We show that although Tregs only modestly inhibit CD4 cell expansion, they potently suppress tissue infiltration. This is associated with a failure of CD4 cells to differentiate into effector cells and to up-regulate the IFN-gamma-dependent chemokine receptor CXCR-3, which confers the ability to respond to pancreatic islet-derived CXCL10. Our data support a model in which Tregs permit T cell activation, yet prohibit T cell differentiation and migration into Ag-bearing tissues.  相似文献   
907.
Control of hepatitis C virus (HCV) infection could be influenced by the timing and magnitude of CD4+ T cell responses against individual epitopes. We characterized CD4+ T cells targeting seven Pan troglodytes (Patr) class II-restricted epitopes during primary and secondary HCV infections of a chimpanzee. All Patr-DR-restricted HCV epitopes bound multiple human HLA-DR molecules, indicating the potential for overlap in epitopes targeted by both species. Some human MHC class II molecules efficiently stimulated IL-2 production by chimpanzee virus-specific T cell clones. Moreover, one conserved epitope designated NS3(1248) (GYKVLVLNPSV) overlapped a helper epitope that is presented by multiple HLA-DR molecules in humans who spontaneously resolved HCV infection. Resolution of primary infection in the chimpanzee was associated with an initial wave of CD4+ T cells targeting a limited set of dominant epitopes including NS3(1248.) A second wave of low-frequency CD4+ T cells targeting other subdominant epitopes appeared in blood several weeks later after virus replication was mostly contained. During a second infection 7 years later, CD4+ T cells against all epitopes appeared in blood sooner and at higher frequencies but the pattern of dominance was conserved. In summary, primary HCV infection in this individual was characterized by T cell populations targeting two groups of MHC class II-restricted epitopes that differed in frequency and kinetics of appearance in blood. The hierarchial nature of the CD4+ T cell response, if broadly applicable to other HCV-infected chimpanzees and humans, could be a factor governing the outcome of HCV infection.  相似文献   
908.
Overexpression of torsinA in PC12 cells protects against toxicity   总被引:6,自引:0,他引:6  
Childhood-onset dystonia is an autosomal dominant movement disorder associated with a three base pair (GAG) deletion mutation in the DYT1 gene. This gene encodes a novel ATP-binding protein called torsinA, which in the central nervous system is expressed exclusively in neurons. Neither the function of torsinA nor its role in the pathophysiology of DYT1 dystonia is known. In order to better understand the cellular functions of torsinA, we established PC12 cell lines overexpressing wild-type or mutant torsinA and subjected them to various conditions deleterious to cell survival. Treatment of control PC12 cells with an inhibitor of proteasomal activity, an oxidizing agent, or trophic withdrawal, resulted in cell death, whereas PC12 cells that overexpressed torsinA were significantly protected against each of these treatments. Overexpression of mutant torsinA failed to protect cells against trophic withdrawal. These results suggest that torsinA may play a protective role in neurons against a variety of cellular insults.  相似文献   
909.
The emergence of cytotoxic T-lymphocyte (CTL) escape mutations in human immunodeficiency virus type 1 (HIV-1) proteins has been anecdotally associated with progression to AIDS, but it has been difficult to determine whether viral mutation is the cause or the result of increased viral replication. Here we describe a perinatally HIV-infected child who maintained a plasma viral load of <400 copies/ml for almost a decade until a nonbinding escape mutation emerged within the immunodominant CTL epitope. The child subsequently experienced a reemergence of HIV-1 viremia accompanied by a marked increase in the number of CTL epitopes targeted. This temporal pattern suggests that CD8 escape can play a causal role in the loss of immune control.  相似文献   
910.
Cell-mediated immunity depends in part on appropriate migration and localization of cytotoxic T lymphocytes (CTL), a process regulated by chemokines and adhesion molecules. Many viruses, including human immunodeficiency virus type 1 (HIV-1), encode chemotactically active proteins, suggesting that dysregulation of immune cell trafficking may be a strategy for immune evasion. HIV-1 gp120, a retroviral envelope protein, has been shown to act as a T-cell chemoattractant via binding to the chemokine receptor and HIV-1 coreceptor CXCR4. We have previously shown that T cells move away from the chemokine stromal cell-derived factor 1 (SDF-1) in a concentration-dependent and CXCR4 receptor-mediated manner. Here, we demonstrate that CXCR4-binding HIV-1 X4 gp120 causes the movement of T cells, including HIV-specific CTL, away from high concentrations of the viral protein. This migratory response is CD4 independent and inhibited by anti-CXCR4 antibodies and pertussis toxin. Additionally, the expression of X4 gp120 by target cells reduces CTL efficacy in an in vitro system designed to account for the effect of cell migration on the ability of CTL to kill their target cells. Recombinant X4 gp120 also significantly reduced antigen-specific T-cell infiltration at a site of antigen challenge in vivo. The repellant activity of HIV-1 gp120 on immune cells in vitro and in vivo was shown to be dependent on the V2 and V3 loops of HIV-1 gp120. These data suggest that the active movement of T cells away from CXCR4-binding HIV-1 gp120, which we previously termed fugetaxis, may provide a novel mechanism by which HIV-1 evades challenge by immune effector cells in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号