首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   416篇
  免费   25篇
  2022年   4篇
  2021年   12篇
  2020年   5篇
  2019年   3篇
  2018年   2篇
  2017年   7篇
  2016年   5篇
  2015年   8篇
  2014年   16篇
  2013年   24篇
  2012年   17篇
  2011年   30篇
  2010年   33篇
  2009年   15篇
  2008年   32篇
  2007年   40篇
  2006年   31篇
  2005年   31篇
  2004年   26篇
  2003年   24篇
  2002年   25篇
  2001年   1篇
  2000年   4篇
  1999年   3篇
  1998年   4篇
  1997年   6篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1966年   1篇
排序方式: 共有441条查询结果,搜索用时 15 毫秒
21.
Nicotiana tabacum (tobacco) is a natural allotetraploid. The maternal genome donor is not controversial and is probably derived from an ancestor of N. sylvestris. The paternal, T-genome donor has been less clear, with N. tomentosiformis, N. otophora, or an introgression hybrid proposed. Here we provide evidence that the T genome of N. tabacum is derived from a particular lineage of N. tomentosiformis. We show that the repetitive sequences of geminiviral origin, GRD53 and GRD3, are present in the genomes of N. tabacum cultivars, a tobacco cell suspension culture TBY-2, and N. tomentosiformis ac. NIC 479/84. Surprisingly, they are not present in another three varieties of N. tomentosiformis. A detailed cytogenetic analysis also revealed that N. tomentosiformis ac. NIC 479/84 most closely resembles the N. tabacum T genome in the location of other tandem repetitive sequences. Thus, tobacco formed after divergence within N. tomentosiformis, and the spectrum of potential donors of the paternal genome can be narrowed to a genotype of N. tomentosiformis characterized by the presence of GRD53 and GRD3 repeats. It is clear that future paternity studies in tobacco should use N. tomentosiformis ac. NIC 479/84 rather than any other accession.  相似文献   
22.
The activities'of the lysosomal cysteine proteinases cathepsin B and L are regulated by their endogenous inhibitors, stefins A and B, and cystatin C, and their imbalance may be associated with increased invasiveness and development of the malignant cell phenotype. The aim of this study was to investigate mRNA, protein and activity levels of the above proteins in relation to in vitro invasiveness and to the reported in vivo tumorigenicity of four human breast tumor cell lines: the spontaneously immortalized cell line MCF10A, its c-Ha-ras transfectant MCF10AT, and two tumorigenic derivative cell lines, MCF10AT-Ca1a and MCF10AT-Ca1d. Invasiveness did not correlate with tumorigenicity, since the MCF10AT cell was the most invasive and the remaining three were at about half of its level. Cathepsin B expression paralleled the in vitro invasiveness through matrigel at all levels of expression, but cathepsin L did not. Stefin levels were elevated several-fold in the tumorigenic cell lines, but not in MCF10AT. The hypothesis that cathepsin B plays an active role in the invasion of breast cancer cell lines was confirmed by the fact that synthetic cysteine proteinase inhibitors, particularly those selective for cathepsin B, significantly reduced the invasion of the MCF10AT cells.  相似文献   
23.
24.
Trichomes excrete secondary metabolites that may alter the chemical composition of the leaf surface, reducing damage caused by herbivores, pathogens and abiotic stresses. We examined the surface exudates produced by Nicotiana attenuata Torr. Ex Wats., a plant known to contain and secrete a number of secondary metabolites that are toxic or a deterrent to herbivorous insects. Extractions specific to the leaf surface, the trichomes, and the laminar components demonstrated the localization of particular compounds. Diterpene glycosides occurred exclusively in leaf mesophyll, whereas nicotine was found in both the trichomes and mesophyll. Neither rutin nor nicotine was found on the leaf surface. Quercetin and 7 methylated derivatives were found in the glandular trichomes and appeared to be excreted onto the leaf surface. We examined the elicitation of these flavonols on the leaf surface with a surface-area allometric analysis, which measures changes in metabolites independent of the effects of leaf expansion. The flavonols responded differently to wounding, methyl jasmonate (MeJA), herbivore attack and UV-C radiation, and the response patterns corresponded to their compound-specific allometries. Finding greater amounts of quercetin on younger leaves and reduced amounts after herbivore feeding and MeJA treatment, we hypothesized that quercetin may function as an attractant, helping the insects locate a preferred feeding site. Consistent with this hypothesis, mirids (Tupiocoris notatus) were found more often on mature leaves sprayed with quercetin at a concentration typical of young leaves than on unsupplemented mature leaves. The composition of metabolites on the leaf surface of N. attenuata changes throughout leaf development and in response to herbivore attack or environmental stress, and these changes are mediated in part by responses of the glandular trichomes.  相似文献   
25.
The immobilization of the enzymes citrate lyase, malate dehydrogenase, isocitrate dehydrogenase and lactate dehydrogenase to CIM monolithic supports was performed. The long-term stability, reproducibility, and linear response range of the immobilized enzyme reactors were investigated along with the determination of the kinetic behavior of the enzymes immobilized on the CIM monoliths. The Michaelis-Menten constant K(m) and the turnover number k(3) of the immobilized enzymes were found to be flow-unaffected. Furthermore, the K(m) values of the soluble and immobilized enzyme were found to be comparable. Both facts indicate the absence of a diffusional limitation in immobilized CIM enzyme reactors.  相似文献   
26.
27.
28.
29.
Several bacterial strains isolated from granitic rock material in front of the Damma glacier (Central Swiss Alps) were shown (i) to grow in the presence of granite powder and a glucose-NH4Cl minimal medium without additional macro- or micronutrients and (ii) to produce weathering-associated agents. In particular, four bacterial isolates (one isolate each of Arthrobacter sp., Janthinobacterium sp., Leifsonia sp., and Polaromonas sp.) were weathering associated. In comparison to what was observed in abiotic experiments, the presence of these strains caused a significant increase of granite dissolution (as measured by the release of Fe, Ca, K, Mg, and Mn). These most promising weathering-associated bacterial species exhibited four main features rendering them more efficient in mineral dissolution than the other investigated isolates: (i) a major part of their bacterial cells was attached to the granite surfaces and not suspended in solution, (ii) they secreted the largest amounts of oxalic acid, (iii) they lowered the pH of the solution, and (iv) they formed significant amounts of HCN. As far as we know, this is the first report showing that the combined action of oxalic acid and HCN appears to be associated with enhanced elemental release from granite, in particular of Fe. This suggests that extensive microbial colonization of the granite surfaces could play a crucial role in the initial soil formation in previously glaciated mountain areas.Glaciers in alpine regions are highly sensitive to changes in climatic conditions (29). Increasing global atmospheric temperatures over the last decades have resulted in the recession of alpine glaciers (18). Forefields of temperate alpine glaciers provide unique opportunities to study initial soil formation as well as microbial and plant succession along the chronosequences (12, 26, 34, 36). The forefields close to the glacier terminus are initially vegetation free and consist mainly of rock material with high fractions of silt-sized grains with low C and N content and small amounts of available nutrients (14). Mineral weathering is a key process in the formation of soils (1, 26), and the crucial importance of microbially promoted mineral weathering for nutrient acquisition is increasingly recognized (2, 4, 39, 46). Recently exposed rock surfaces can be considered primary ecosystems where only a few microbes that are adapted due to their mineral-weathering abilities can grow (17). Some cations of rock-forming minerals are essential for proper cell functions. However, our understanding of geochemically significant microbes in forefields of temperate alpine glacier is still very limited but is crucial for increasing our knowledge of nutrient mobilization and the buildup of organic matter that is essential for the development of macroorganisms.The area of the Damma glacier in Central Switzerland is characterized by a relatively homogenous granitic rock basement and is used as field site of the interdisciplinary research project “Biosphere-Geosphere interactions: Linking climate change, weathering, soil formation and ecosystem evolution (BigLink)” (5). In the frame of this research project, we studied the functional roles of granite-colonizing microbes as biotic weathering agents in previously glaciated areas. So far, relatively little is known about microbe-granite interactions, especially regarding the release of trace elements. Several studies have examined the dissolution of specific granite-forming minerals in the presence of actively metabolizing bacteria or compounds that simulate metabolic activity (24, 30, 31, 37, 38, 44). There is a general agreement that microbially produced organic acids, siderophores, and extracellular polysaccharides can all promote dissolution of minerals. Previous dissolution experiments have mainly been performed with (i) commercially obtained minerals (23, 45), (ii) model microorganisms that were commercially obtained from culture collections (3, 35, 45), or (iii) laboratory strains, such as those of Bacillus subtilis (23) and Burkholderia fungorum (47). Most studies have focused on individual mineral specimens rather than on the mixture of minerals that are present in granite rock (47). Few studies observed mineral weathering of collected rock and bacteria isolated from volcanic areas covered with vegetation (30, 31). Moreover, there are no studies on microbial weathering for such immediately deglaciated environments combining functional and taxonomic investigations, probably due to the difficulties in obtaining heterotrophic bacterial isolates from granitic glacier forefields. In spite of this, a comprehensive culture collection containing approximately 500 bacterial strains, which were isolated from the glacier tongue of the Damma glacier, was established. Full-length 16S rRNA gene sequences of 120 isolates revealed that many isolates obtained from oligotrophic media were closely related to readily cultivable heterotrophic bacteria (e.g., Arthrobacter sp., Collimonas sp., Paenibacillus sp., and Pseudomonas sp.). These bacteria have been found to enhance mineral dissolution (39).Our aim was to characterize the impact of microorganisms on granite weathering. We performed laboratory dissolution experiments with sterile crushed granite rock material, 12 bacterial strains, and 1 algal strain. To investigate the potential weathering abilities of these isolates, granite dissolution experiments were performed abiotically with model agents, such as HCl for proton-promoted weathering or oxalate and citrate and KCN for ligand-promoted weathering.  相似文献   
30.
Few studies have examined exodermal development in relation to the formation of barriers to both radial oxygen loss (ROL) and solute penetration along growing roots. Here, we report on the structural development, chemical composition and functional properties of the exodermis in two diverse wetland grasses, Glyceria maxima and Phragmites australis. Anatomical features, development, the biochemical composition of exodermal suberin and the penetration of apoplastic tracers and oxygen were examined. Striking interspecific differences in exodermal structure, suberin composition and quantity per unit surface area, and developmental changes along the roots were recorded. Towards the root base, ROL and periodic acid (H(5)IO(6)) penetration were virtually stopped in P. australis; in G. maxima, a tight ROL barrier restricted but did not stop H(5)IO(6) penetration and the exodermis failed to stain with lipidic dyes. Cultivation in stagnant deep hypoxia conditions or oxygenated circulating solution affected the longitudinal pattern of ROL profiles in G. maxima but statistically significant changes in exodermal suberin composition or content were not detected. Interspecific differences in barrier performance were found to be related to hypodermal structure and probably to qualitative as well as quantitative variations in suberin composition and distribution within exodermal cell walls. Implications for root system function are discussed, and it is emphasized that sufficient spatial resolution to identify the effects of developmental changes along roots is crucial for realistic evaluation of exodermal barrier properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号