首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   610篇
  免费   28篇
  国内免费   1篇
  639篇
  2022年   3篇
  2021年   10篇
  2019年   6篇
  2018年   12篇
  2017年   16篇
  2016年   13篇
  2015年   17篇
  2014年   21篇
  2013年   27篇
  2012年   29篇
  2011年   20篇
  2010年   13篇
  2009年   31篇
  2008年   27篇
  2007年   42篇
  2006年   42篇
  2005年   23篇
  2004年   17篇
  2003年   20篇
  2002年   17篇
  2001年   23篇
  2000年   27篇
  1999年   11篇
  1998年   15篇
  1997年   7篇
  1996年   7篇
  1995年   6篇
  1994年   4篇
  1992年   9篇
  1991年   5篇
  1990年   11篇
  1989年   11篇
  1988年   9篇
  1987年   8篇
  1986年   7篇
  1985年   6篇
  1984年   4篇
  1982年   3篇
  1979年   5篇
  1977年   2篇
  1976年   8篇
  1975年   4篇
  1974年   4篇
  1973年   4篇
  1972年   4篇
  1971年   4篇
  1970年   2篇
  1969年   8篇
  1968年   3篇
  1967年   3篇
排序方式: 共有639条查询结果,搜索用时 15 毫秒
11.
ATP-sensitive potassium (K(ATP)) channels are bifunctional multimers assembled by an ion conductor and a sulfonylurea receptor (SUR) ATPase. Sensitive to ATP/ADP, K(ATP) channels are vital metabolic sensors. However, channel regulation by competitive ATP/ADP binding would require oscillations in intracellular nucleotides incompatible with cell survival. We found that channel behavior is determined by the ATPase-driven engagement of SUR into discrete conformations. Capture of the SUR catalytic cycle in prehydrolytic states facilitated pore closure, while recruitment of posthydrolytic intermediates translated in pore opening. In the cell, channel openers stabilized posthydrolytic states promoting K(ATP) channel activation. Nucleotide exchange between intrinsic ATPase and ATP/ADP-scavenging systems defined the lifetimes of specific SUR conformations gating K(ATP) channels. Signal transduction through the catalytic module provides a paradigm for channel/enzyme operation and integrates membrane excitability with metabolic cascades.  相似文献   
12.
13.
Glucosidase I is an important enzyme in N-linked glycoprotein processing, removing specifically distal alpha-1,2-linked glucose from the Glc3Man9GlcNAc2 precursor after its en bloc transfer from dolichyl diphosphate to a nascent polypeptide chain in the endoplasmic reticulum. We have identified a glucosidase I defect in a neonate with severe generalized hypotonia and dysmorphic features. The clinical course was progressive and was characterized by the occurrence of hepatomegaly, hypoventilation, feeding problems, seizures, and fatal outcome at age 74 d. The accumulation of the tetrasaccharide Glc(alpha1-2)Glc(alpha1-3)Glc(alpha1-3)Man in the patient's urine indicated a glycosylation disorder. Enzymological studies on liver tissue and cultured skin fibroblasts revealed a severe glucosidase I deficiency. The residual activity was <3% of that of controls. Glucosidase I activities in cultured skin fibroblasts from both parents were found to be 50% of those of controls. Tissues from the patient subjected to SDS-PAGE followed by immunoblotting revealed strongly decreased amounts of glucosidase I protein in the homogenate of the liver, and a less-severe decrease in cultured skin fibroblasts. Molecular studies showed that the patient was a compound heterozygote for two missense mutations in the glucosidase I gene: (1) one allele harbored a G-->C transition at nucleotide (nt) 1587, resulting in the substitution of Arg at position 486 by Thr (R486T), and (2) on the other allele a T-->C transition at nt 2085 resulted in the substitution of Phe at position 652 by Leu (F652L). The mother was heterozygous for the G-->C transition, whereas the father was heterozygous for the T-->C transition. These base changes were not seen in 100 control DNA samples. A causal relationship between the alpha-glucosidase I deficiency and the disease is postulated.  相似文献   
14.
15.
16.
Gold@silica core–shell nanoparticles were prepared with various gold core diameters (ranging from 20 to 150 nm) and silica thicknesses (ranging from 10 to 30 nm). When the gold diameter is increased, the size dispersion became larger, leading to a broader plasmon band. Then, silicon carbide (SiC) nanoparticles were covalently immobilized onto silica to obtain hybrid (Au@SiO2) SiC nanoparticles. The absorption properties of these hybrid nanoparticles showed that an excess of SiC nanoparticles in the dispersion can be identified by a strong absorption in the UV region. Compared to SiC reference samples, a blue shift of the fluorescence emission, from 582 to 523 nm, was observed, which was previously attributed to the strong surface modification of SiC when immobilized onto silica. Finally, the influence of several elaboration parameters (gold diameter, silica thickness, SiC concentration) on fluorescence enhancement was investigated. It showed that the highest enhancements were obtained with 10 nm silica thickness, low concentration of SiC nanoparticles, and surprisingly, with a 20-nm gold core diameter. This last result could be attributed to the broad plasmon band of big gold colloids. In this case, SiC emission strongly overlapped gold absorption, leading to possible quenching of SiC fluorescence by energy transfer.  相似文献   
17.
One of the functions of cytochrome c in living cells is the initiation of apoptosis by catalyzing lipid peroxidation in the inner mitochondrial membrane, which involves cytochrome c bound with acidic lipids, especially cardiolipin. In this paper the results of studies of cytochrome c-cardiolipin complex structure carried out by different authors mainly on unilamellar cardiolipin-containing phospholipid liposomes are critically analyzed. The principal conclusion from the published papers is that cytochrome c-cardiolipin complex is formed by attachment of a cytochrome c molecule to the membrane surface via electrostatic interactions and the subsequent penetration of one of the fatty-acid cardiolipin chains into the protein globule, this being associated with hydrophobic interactions that break the >Fe…S(Met80) coordinate bond and giving rise to appearance of cytochrome c peroxidase activity. Nevertheless, according to data obtained in our laboratory, cytochrome c and cardiolipin form spherical nanoparticles in which protein is surrounded by a monolayer of cardiolipin molecules. Under the action of cooperative forces, the protein in the globule expands greatly in volume, its conformation is modified, and the protein becomes a peroxidase. In extended membranes, such as giant monolayer liposomes, and very likely in biological membranes, the formation of nanospheres of cytochrome c-cardiolipin complex causes fusion of membrane sections and dramatic chaotization of the whole membrane structure. The subsequent disintegration of the outer mitochondrial membrane is accompanied by cytochrome c release from the mitochondria and triggering of a cascade of programmed cell death reactions.  相似文献   
18.
19.
ATP-sensitive potassium channels: metabolic sensing and cardioprotection.   总被引:1,自引:0,他引:1  
The cardiovascular system operates under a wide scale of demands, ranging from conditions of rest to extreme stress. How the heart muscle matches rates of ATP production with utilization is an area of active investigation. ATP-sensitive potassium (K(ATP)) channels serve a critical role in the orchestration of myocardial energetic well-being. K(ATP) channel heteromultimers consist of inwardly-rectifying K(+) channel 6.2 and ATP-binding cassette sulfonylurea receptor 2A that translates local ATP/ADP levels, set by ATPases and phosphotransfer reactions, to the channel pore function. In cells in which the mobility of metabolites between intracellular microdomains is limited, coupling of phosphotransfer pathways with K(ATP) channels permits a high-fidelity transduction of nucleotide fluxes into changes in membrane excitability, matching energy demands with metabolic resources. This K(ATP) channel-dependent optimization of cardiac action potential duration preserves cellular energy balance at varying workloads. Mutations of K(ATP) channels result in disruption of the nucleotide signaling network and generate a stress-vulnerable phenotype with excessive susceptibility to injury, development of cardiomyopathy, and arrhythmia. Solving the mechanisms underlying the integration of K(ATP) channels into the cellular energy network will advance the understanding of endogenous cardioprotection and the development of strategies for the management of cardiovascular injury and disease progression.  相似文献   
20.

Background

A major concern in conservation genetics is to maintain the genetic diversity of populations. Genetic variation in livestock species is threatened by the progressive marginalisation of local breeds in benefit of high-output pigs worldwide. We used high-density SNP and re-sequencing data to assess genetic diversity of local pig breeds from Europe. In addition, we re-sequenced pigs from commercial breeds to identify potential candidate mutations responsible for phenotypic divergence among these groups of breeds.

Results

Our results point out some local breeds with low genetic diversity, whose genome shows a high proportion of regions of homozygosis (>50%) and that harbour a large number of potentially damaging mutations. We also observed a high correlation between genetic diversity estimates using high-density SNP data and Next Generation Sequencing data (r = 0.96 at individual level). The study of non-synonymous SNPs that were fixed in commercial breeds and also in any local breed, but with different allele, revealed 99 non-synonymous SNPs affecting 65 genes. Candidate mutations that may underlie differences in the adaptation to the environment were exemplified by the genes AZGP1 and TAS2R40. We also observed that highly productive breeds may have lost advantageous genotypes within genes involve in immune response – e.g. IL12RB2 and STAB1–, probably as a result of strong artificial in the intensive production systems in pig.

Conclusions

The high correlation between genetic diversity computed with the 60K SNP and whole genome re-sequence data indicates that the Porcine 60K SNP Beadchip provides reliable estimates of genomic diversity in European pig populations despite the expected bias. Moreover, this analysis gave insights for strategies to the genetic characterization of local breeds. The comparison between re-sequenced local pigs and re-sequenced commercial pigs made it possible to report candidate mutations to be responsible for phenotypic divergence among those groups of breeds. This study highlights the importance of low input breeds as a valuable genetic reservoir for the pig production industry. However, the high levels of ROHs, inbreeding and potentially damaging mutations emphasize the importance of the genetic characterization of local breeds to preserve their genomic variability.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-601) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号