首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   243篇
  免费   18篇
  261篇
  2023年   2篇
  2022年   5篇
  2021年   15篇
  2020年   3篇
  2019年   11篇
  2018年   7篇
  2017年   3篇
  2016年   10篇
  2015年   18篇
  2014年   13篇
  2013年   19篇
  2012年   21篇
  2011年   13篇
  2010年   9篇
  2009年   13篇
  2008年   16篇
  2007年   23篇
  2006年   18篇
  2005年   6篇
  2004年   14篇
  2003年   9篇
  2002年   4篇
  2000年   1篇
  1998年   3篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
排序方式: 共有261条查询结果,搜索用时 15 毫秒
1.
Histone deacetylases (HDAC’s) became increasingly important targets for therapy of various diseases, resulting in a pressing need to develop HDAC class- and isoform-selective inhibitors. Class IIa deacetylases possess only minimal deacetylase activity against acetylated histones, but have several other client proteins as substrates through which they participate in epigenetic regulation. Herein, we report the radiosyntheses of the second generation of HDAC class IIa–specific radiotracers: 6-(di-fluoroacetamido)-1-hexanoicanilide (DFAHA) and 6-(tri-fluoroacetamido)-1-hexanoicanilide ([18F]-TFAHA). The selectivity of these radiotracer substrates to HDAC class IIa enzymes was assessed in vitro, in a panel of recombinant HDACs, and in vivo using PET/CT imaging in rats. [18F]TFAHA showed significantly higher selectivity for HDAC class IIa enzymes, as compared to [18F]DFAHA and previously reported [18F]FAHA. PET imaging with [18F]TFAHA can be used to visualize and quantify spatial distribution and magnitude of HDAC class IIa expression-activity in different organs and tissues in vivo. Furthermore, PET imaging with [18F]TFAHA may advance the understanding of HDACs class IIa mediated epigenetic regulation of normal and pathophysiological processes, and facilitate the development of novel HDAC class IIa-specific inhibitors for therapy of different diseases.  相似文献   
2.
Probiotics and Antimicrobial Proteins - The study aims at elucidating the effect of bacilli probiotic preparations on the physiology of laying hens and roosters. Probiotic formulations were...  相似文献   
3.
Peptide toxins of arthropods are one of the potential sources of bioactive substances. Toxins are able to bind to calcium channels and block them. Ca2+ ions play an important role in many cell processes, in particular, in apoptosis. In this work, we study the effect of some arthropod toxins on intracellular processes associated with the induction of apoptosis. Synthetic analogs of U5‐scytotoxin‐Sth1a, ω‐hexatoxin‐Hv1a, ω‐theraphotoxin‐Hhn2a, and μ‐agatoxin‐Aa1a toxins—inhibitors of calcium L, P, and Q channels and sodium channels were used in the study. Apoptosis was induced by AC‐1001 H3 peptide. We study the effect of toxins on the level of apoptosis, ROS, mitochondrial potential, GSH, and ATP in CHO‐K1 cells. We show that all the tested toxins are able to dose dependently block the induction of apoptosis triggered by AC‐1001 H3 and reduce the level of natural apoptosis in CHO‐K1 cells. Cell incubation with apoptosis inducer AC‐1001 H3 in the presence and absence of toxins causes an increase in the intracellular concentrations of ROS, ATP, and mitochondrial potential and decreases the GSH concentration. The present study reveals the antiapoptotic effect of a number of arthropod peptide toxins. The toxins studied can represent a novel approach used in the treatment of pathologies associated with the activation of apoptotic mechanisms.  相似文献   
4.
The lifetimes of fluorescent components of matrix NADH in isolated porcine heart mitochondria were investigated using time-resolved fluorescence spectroscopy. Three distinct lifetimes of fluorescence were resolved: 0.4 (63%), 1.8 (30%), and 5.7 (7%) ns (% total NADH). The 0.4 ns lifetime and the emission wavelength of the short component were consistent with free NADH. In addition to their longer lifetimes, the remaining pools also had a blue-shifted emission spectrum consistent with immobilized NADH. On the basis of emission frequency and lifetime data, the immobilized pools contributed >80% of NADH fluorescence. The steady-state kinetics of NADH entering the immobilized pools was measured in intact mitochondria and in isolated mitochondrial membranes. The apparent binding constants (K(D)s) for NADH in intact mitochondria, 2.8 mM (1.9 ns pool) and >3 mM (5.7 ns pool), were on the order of the estimated matrix [NADH] (approximately 3.5 mM). The affinities and fluorescence lifetimes resulted in an essentially linear relationship between matrix [NADH] and NADH fluorescence intensity. Mitochondrial membranes had shorter emission lifetimes in the immobilized poo1s [1 ns (34%) and 4.1 ns (8%)] with much higher apparent K(D)s of 100 microM and 20 microM, respectively. The source of the stronger NADH binding affinity in membranes is unknown but could be related to high order structure or other cofactors that are diluted out in the membrane preparation. In both preparations, the rate of NADH oxidation was proportional to the amount of NADH in the long lifetime pools, suggesting that a significant fraction of the bound NADH might be associated with oxidative phosphorylation, potentially in complex 1.  相似文献   
5.
International Journal of Peptide Research and Therapeutics - This study presents a simple approach in design of tripeptides as a competitive inhibitor for 3-hydroxy-3-methylglutaryl CoA reductase...  相似文献   
6.
The role of human leukocyte antigen (HLA) class I supertypes in controlling human immunodeficiency virus type 1 (HIV-1) infection in African Americans has not been established. We examined the effects of the HLA-A and HLA-B alleles and supertypes on the outcomes of HIV-1 clade B infection among 338 African American women and adolescents. HLA-B58 and -B62 supertypes (B58s and B62s) were associated with favorable HIV-1 disease control (proportional odds ratio [POR] of 0.33 and 95% confidence interval [95% CI] of 0.21 to 0.52 for the former and POR of 0.26 and 95% CI of 0.09 to 0.73 for the latter); B7s and B44s were associated with unfavorable disease control (POR of 2.39 and 95% CI of 1.54 to 3.73 for the former and POR of 1.63 and 95% CI of 1.08 to 2.47 for the latter). In general, individual alleles within specific B supertypes exerted relatively homogeneous effects. A notable exception was B27s, whose protective influence (POR, 0.58; 95% CI, 0.35 to 0.94) was masked by the opposing effect of its member allele B*1510. The associations of most B supertypes (e.g., B58s and B7s) were largely explained either by well-known effects of constituent B alleles or by effects of previously unimplicated B alleles aggregated into a particular supertype (e.g., B44s and B62s). A higher frequency of HLA-B genotypic supertypes correlated with a higher mean viral load (VL) and lower mean CD4 count (Pearson''s r = 0.63 and 0.62, respectively; P = 0.03). Among the genotypic supertypes, B58s and its member allele B*57 contributed disproportionately to the explainable VL variation. The study demonstrated the dominant role of HLA-B supertypes in HIV-1 clade B-infected African Americans and further dissected the contributions of individual class I alleles and their population frequencies to the supertype effects.African Americans in the United States have been affected disproportionately by the human immunodeficiency virus type 1 (HIV-1) epidemic. They accounted for only 13% of the U.S. population but for 47% of AIDS cases diagnosed in the United States in 2006 (14, 17). An HIV-1 vaccine would be of enormous benefit to this subpopulation. One strategy for HIV-1 vaccine development seeks to capitalize on the recognition and destruction of HIV-1-infected cells by cytotoxic T lymphocytes (CTLs) (32, 33, 35).CTL recognition is critically dependent on binding, presentation, and cell surface display of a variety of antigenic peptides (epitopes) by extremely polymorphic human leukocyte antigen (HLA) molecules. As the relative importance of increasing numbers of HIV-1 epitopes for individual HLA class I molecules has been recognized (9, 16), the feasibility of developing a vaccine tailored to every epitope and HLA specificity has come to seem more remote. Conceptualization of epitope specificity in terms of broad groupings (supertypes) of HLA molecules may provide a rational but simpler approach to this challenge.Several efforts have succeeded at consolidating the huge spectrum of individual HLA class I alleles into four HLA-A and five HLA-B supertype categories (37-39), based on the ability of different HLA class I molecules to present similar epitopes. Unlike individual allele frequencies, which vary greatly across ethnic groups, all nine supertypes (comprising most, but not all, HLA-A and HLA-B alleles) are present in all human populations. This more uniform representation of allele groups may confer an advantage in the form of balancing selection (38).HLA alleles within one supertype that share epitope binding specificities might be expected to demonstrate similar associations with HIV-1 outcomes or vaccine response; conversely, alleles within a supertype that differ substantially in function might be expected to show differential responses to natural infection or vaccines designed on the basis of supertype (2). Functional heterogeneity of alleles within the supertypes could be due to differences in the class I alleles themselves (e.g., variable epitope avidity or tolerance to viral mutations), in host background (genetic epistasis), or in the virus (e.g., clade-related epitope specificities or viral escape).Previous work has detected associations between the HLA class I supertypes and HIV-1 outcomes for Caucasians with clade B infections (34, 44) and for native Africans with clade A or C infections (23, 28). We are unaware of studies among African Americans in the context of clade B HIV-1 infection or of any systematic attempt to tease apart the independent contributions of supertypes and their individual class I alleles to HIV-1 outcomes. Here we document the frequencies of the HLA class I alleles and supertypes in the Reaching for Excellence in Adolescent Care and Health (REACH) and HIV Epidemiologic Research Study (HERS) cohorts, and we report the relative effects of those alleles and supertypes on the degree of HIV-1 disease control.  相似文献   
7.
Alzheimer disease is associated with the accumulation of oligomeric amyloid β peptide (Aβ), accompanied by synaptic dysfunction and neuronal death. Polymeric form of prion protein (PrP), PrPSc, is implicated in transmissible spongiform encephalopathies (TSEs). Recently, it was shown that the monomeric cellular form of PrP (PrPC), located on the neuron surface, binds Aβ oligomers (and possibly other β-rich conformers) via the PrP23–27 and PrP90–110 segments, acting as Aβ receptor. On the other hand, PrPSc polymers efficiently bind to Aβ monomers and accelerate their oligomerization. To identify specific PrP sequences that are essential for the interaction between PrP polymers and Aβ peptide, we have co-expressed Aβ and PrP (or its shortened derivatives), fused to different fluorophores, in the yeast cell. Our data show that the 90–110 and 28–89 regions of PrP control the binding of proteinase-resistant PrP polymers to the Aβ peptide, whereas the 23–27 segment of PrP is dispensable for this interaction. This indicates that the set of PrP fragments involved in the interaction with Aβ depends on PrP conformational state.  相似文献   
8.
Gall A  Ellervee A  Robert B  Freiberg A 《FEBS letters》2004,560(1-3):221-225
The effect of application of high pressure on the carotenoid-containing bacterial reaction centre from Rhodobacter sphaeroides strain 2.4.1 was studied, and compared to recent experiments performed on its carotenoid-less counterpart, isolated from strain R26.1. Our results indicate that the cavity created by the absence of carotenoid contributes to localised differences in protein compressibility when using the intrinsic chromophores as molecular probes. Differential stability of the electronic transitions of the primary electron donor under high hydrostatic pressure is observed, dependent on the presence of the carotenoid cofactor. This suggests that the transition intensity loss is induced by a slight change of the primary electron donor structure, allowed by the void created by the absence of the carotenoid molecule.  相似文献   
9.
10.
Myogenesis is a crucial process governing skeletal muscle development and homeostasis. Differentiation of primitive myoblasts into mature myotubes requires a metabolic switch to support the increased energetic demand of contractile muscle. Skeletal myoblasts specifically shift from a highly glycolytic state to relying predominantly on oxidative phosphorylation (OXPHOS) upon differentiation. We have found that this phenomenon requires dramatic remodeling of the mitochondrial network involving both mitochondrial clearance and biogenesis. During early myogenic differentiation, autophagy is robustly upregulated and this coincides with DNM1L/DRP1 (dynamin 1-like)-mediated fragmentation and subsequent removal of mitochondria via SQSTM1 (sequestosome 1)-mediated mitophagy. Mitochondria are then repopulated via PPARGC1A/PGC-1α (peroxisome proliferator-activated receptor gamma, coactivator 1 alpha)-mediated biogenesis. Mitochondrial fusion protein OPA1 (optic atrophy 1 [autosomal dominant]) is then briskly upregulated, resulting in the reformation of mitochondrial networks. The final product is a myotube replete with new mitochondria. Respirometry reveals that the constituents of these newly established mitochondrial networks are better primed for OXPHOS and are more tightly coupled than those in myoblasts. Additionally, we have found that suppressing autophagy with various inhibitors during differentiation interferes with myogenic differentiation. Together these data highlight the integral role of autophagy and mitophagy in myogenic differentiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号