首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   603篇
  免费   22篇
  2023年   2篇
  2022年   7篇
  2021年   8篇
  2019年   10篇
  2018年   20篇
  2017年   9篇
  2016年   16篇
  2015年   23篇
  2014年   38篇
  2013年   27篇
  2012年   43篇
  2011年   50篇
  2010年   31篇
  2009年   18篇
  2008年   34篇
  2007年   43篇
  2006年   40篇
  2005年   36篇
  2004年   24篇
  2003年   26篇
  2002年   34篇
  2001年   3篇
  2000年   3篇
  1999年   3篇
  1998年   3篇
  1997年   5篇
  1996年   1篇
  1995年   6篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   5篇
  1984年   1篇
  1982年   6篇
  1981年   3篇
  1980年   3篇
  1979年   8篇
  1978年   3篇
  1977年   7篇
  1976年   3篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
排序方式: 共有625条查询结果,搜索用时 31 毫秒
31.
The α1A-AR is thought to couple predominantly to the Gαq/PLC pathway and lead to phosphoinositide hydrolysis and calcium mobilization, although certain agonists acting at this receptor have been reported to trigger activation of arachidonic acid formation and MAPK pathways. For several G protein-coupled receptors (GPCRs) agonists can manifest a bias for activation of particular effector signaling output, i.e. not all agonists of a given GPCR generate responses through utilization of the same signaling cascade(s). Previous work with Gαq coupling-defective variants of α1A-AR, as well as a combination of Ca2+ channel blockers, uncovered cross-talk between α1A-AR and β2-AR that leads to potentiation of a Gαq-independent signaling cascade in response to α1A-AR activation. We hypothesized that molecules exist that act as biased agonists to selectively activate this pathway. In this report, isoproterenol (Iso), typically viewed as β-AR-selective agonist, was examined with respect to activation of α1A-AR. α1A-AR selective antagonists were used to specifically block Iso evoked signaling in different cellular backgrounds and confirm its action at α1A-AR. Iso induced signaling at α1A-AR was further interrogated by probing steps along the Gαq /PLC, Gαs and MAPK/ERK pathways. In HEK-293/EBNA cells transiently transduced with α1A-AR, and CHO_α1A-AR stable cells, Iso evoked low potency ERK activity as well as Ca2+ mobilization that could be blocked by α1A-AR selective antagonists. The kinetics of Iso induced Ca2+ transients differed from typical Gαq- mediated Ca2+ mobilization, lacking both the fast IP3R mediated response and the sustained phase of Ca2+ re-entry. Moreover, no inositol phosphate (IP) accumulation could be detected in either cell line after stimulation with Iso, but activation was accompanied by receptor internalization. Data are presented that indicate that Iso represents a novel type of α1A-AR partial agonist with signaling bias toward MAPK/ERK signaling cascade that is likely independent of coupling to Gαq.  相似文献   
32.

Objective

Evidence suggests that substance P (SP) is involved in chronic joint inflammation, such as the pathogenesis of rheumatoid arthritis and osteoarthritis. The goal of the research was to evaluate the correlation between chronic pain and changes in the SP level in patients with chronic inflammation of the connective tissue.

Methods

Patients with osteoarthritis and rheumatoid arthritis were enrolled in this study. The relationship between chronic pain intensity and the serum SP concentration was evaluated in these groups of patients with osteoarthritis and rheumatoid arthritis.

Results

The results showed a positive correlation between the serum SP concentrations and chronic pain intensity.

Conclusions

1. The SP serum concentration was significantly different between the groups of patients with OA and RA. 2. There was a positive correlation between the serum SP concentration and chronic pain intensity in OA and RA patients.  相似文献   
33.
Mathematical simulations of oxygen delivery to tissue from capillaries that take into account the particulate nature of blood flow predict the existence of oxygen tension (Po(2)) gradients between erythrocytes (RBCs). As RBCs and plasma alternately pass an observation point, these gradients are manifested as rapid fluctuations in Po(2), also known as erythrocyte-associated transients (EATs). The impact of hemodilution on EATs and oxygen delivery at the capillary level of the microcirculation has yet to be elucidated. Therefore, in the present study, phosphorescence quenching microscopy was used to measure EATs and Po(2) in capillaries of the rat spinotrapezius muscle at the following systemic hematocrits (Hct(sys)): normal (39%) and after moderate (HES1; 27%) or severe (HES2; 15%) isovolemic hemodilution using a 6% hetastarch solution. A 532-nm laser, generating 10-micros pulses concentrated onto a 0.9-microm spot, was used to obtain plasma Po(2) values 100 times/s at points along surface capillaries of the muscle. Mean capillary Po(2) (Pc(O(2)); means +/- SE) significantly decreased between conditions (normal: 56 +/- 2 mmHg, n = 45; HES1: 47 +/- 2 mmHg, n = 62; HES2: 27 +/- 2 mmHg, n = 52, where n = capillary number). In addition, the magnitude of Po(2) transients (DeltaPo(2)) significantly decreased with hemodilution (normal: 19 +/- 1 mmHg, n = 45; HES1: 11 +/- 1 mmHg, n = 62; HES2: 6 +/- 1 mmHg, n = 52). Results suggest that the decrease in Pc(O(2)) and DeltaPo(2) with hemodilution is primarily dependent on Hct(sys) and subsequent microvascular compensations.  相似文献   
34.
Red blood cell aggregation at low flow rates increases venous vascular resistance, but the process of aggregate formation in these vessels is not well understood. We previously reported that aggregate formation in postcapillary venules of the rat spinotrapezius muscle mainly occurs in a middle region between 15 and 30 microm downstream from the entrance. In light of the findings in that study, the main purpose of this study was to test two hypotheses by measuring collision frequency along the length of the venules during low flow. We tested the hypothesis that aggregation rarely occurs in the initial 15-microm region of the venule because collision frequency is very low. We found that collision frequency was lower than in other regions, but collision efficiency (the ratio of aggregate formation to collisions) was almost nil in this region, most likely because of entrance effects and time required for aggregation. Radial migration of red blood cells and Dextran 500 had no effect on collision frequency. We also tested the hypothesis that aggregation was reduced in the distal venule region because of the low aggregability of remaining nonaggregated cells. Our findings support this hypothesis, since a simple model based on the ratio of aggregatable to nonaggregatable red blood cells predicts the time course of collision efficiency in this region. Collision efficiency averaged 18% overall but varied from 0 to 52% and was highest in the middle region. We conclude that while collision frequency influences red blood cell aggregate formation in postcapillary venules, collision efficiency is more important.  相似文献   
35.
Angiogenesis, or neovascularization, is tightly orchestrated by endogenous regulators that promote or inhibit the process. The fine-tuning of these pro- and anti-angiogenic elements (the angiogenic balance) helps establish the homeostasis in tissues, and any aberration leads to pathologic conditions. The type I thrombospondin repeats are a family of protein structural elements involved in the control of angiogenesis, and some proteins containing these repeats have been identified as negative regulators of angiogenesis. Here we identify a set of 11 novel, anti-angiogenic 18–20-amino acid peptides that are derived from proteins that belong to the CCN protein family and contain type I thrombospondin motifs. We have named these peptides spondinstatin-1, cyrostatin, connectostatin, nephroblastostatin, wispostatin-2, wispostatin-3, netrinstatin-5C, netrinstatin-5D, adamtsostatin-like-4, fibulostatin-6.1, and complestatin-C6 to reflect their origin. We have shown that these peptides inhibit proliferation and migration of human umbilical vein endothelial cells in vitro. By conducting a clustering analysis of the amino acid sequences using sequence similarity criteria and of the experimental results using a hierarchical clustering algorithm, we have demonstrated that there is an underlying correlation between the sequence and activity of the identified peptides. This combination of experimental and computational approaches introduces a novel systematic framework for studying peptide activity, identifying novel peptides with anti-angiogenic activity, and designing mimetic peptides with tailored properties.  相似文献   
36.
Separation of red blood cells and plasma in microcirculatory vessels produces a cell-free layer at the wall. This layer may be an important determinant of blood viscosity and wall shear stress in arterioles, where most of the hydraulic pressure loss in the circulatory system occurs and flow regulatory mechanisms are prominent. With the use of a newly developed method, the width of the cell-free layer was rapidly and repeatedly determined in arterioles (10- to 50-microm inner diameter) in the rat cremaster muscle at normal arterial pressure. The temporal variation of the cell-free layer width was non-Gaussian, but calculated mean and median values differed by <0.2 microm. The correlation length of the temporal variations downstream (an indication of mixing) was approximately 30 microm and was independent of pseudoshear rate (ratio of mean velocity to vessel diameter) and of vessel diameter. The cell-free layer width was significantly different on opposite sides of the vessel and inversely related. Increasing red blood cell aggregability reduced this inverse relation but had no effect on correlation length. In the diameter range studied, the mean width of the cell-free layer increased from 0.8 to 3.1 microm and temporal variations increased from 30% to 70% of the mean width. Increased aggregability did not alter either relationship. In summary, the cell-free layer width in arterioles is diameter dependent and shows substantial non-Gaussian temporal variations. The temporal variations increase as diameter increases and are inversely related on opposite sides of the vessel.  相似文献   
37.
38.

Background  

Mathematical modeling of angiogenesis has been gaining momentum as a means to shed new light on the biological complexity underlying blood vessel growth. A variety of computational models have been developed, each focusing on different aspects of the angiogenesis process and occurring at different biological scales, ranging from the molecular to the tissue levels. Integration of models at different scales is a challenging and currently unsolved problem.  相似文献   
39.
Vascular endothelial growth factor (VEGF) is a key regulator of angiogenesis--the growth of new microvessels from existing microvasculature. Angiogenesis is a complex process involving numerous molecular species, and to better understand it, a systems biology approach is necessary. In vivo preclinical experiments in the area of angiogenesis are typically performed in mouse models; this includes drug development targeting VEGF. Thus, to quantitatively interpret such experimental results, a computational model of VEGF distribution in the mouse can be beneficial. In this paper, we present an in silico model of VEGF distribution in mice, determine model parameters from existing experimental data, conduct sensitivity analysis, and test the validity of the model. The multiscale model is comprised of two compartments: blood and tissue. The model accounts for interactions between two major VEGF isoforms (VEGF(120) and VEGF(164)) and their endothelial cell receptors VEGFR-1, VEGFR-2, and co-receptor neuropilin-1. Neuropilin-1 is also expressed on the surface of parenchymal cells. The model includes transcapillary macromolecular permeability, lymphatic transport, and macromolecular plasma clearance. Simulations predict that the concentration of unbound VEGF in the tissue is approximately 50-fold greater than in the blood. These concentrations are highly dependent on the VEGF secretion rate. Parameter estimation was performed to fit the simulation results to available experimental data, and permitted the estimation of VEGF secretion rate in healthy tissue, which is difficult to measure experimentally. The model can provide quantitative interpretation of preclinical animal data and may be used in conjunction with experimental studies in the development of pro- and anti-angiogenic agents. The model approximates the normal tissue as skeletal muscle and includes endothelial cells to represent the vasculature. As the VEGF system becomes better characterized in other tissues and cell types, the model can be expanded to include additional compartments and vascular elements.  相似文献   
40.
This study uses a computational model to characterize the myocardial deposition and retention of basic fibroblast growth factor (FGF-2) at the cellular level after intracoronary (IC) administration of exogenous FGF-2. The model is applied to the in situ conditions present within the myocardium of a dog for which the plasma pharmacokinetics resulting from IC injection of FGF-2 were recorded. Our estimates show that the processes involved in FGF-2 signaling are not diffusion limited; rather, the response time is determined by the reaction time of FGF-2 binding to cell surface receptors. Additionally, the processes of receptor secretion and internalization are found to play crucial roles in the FGF-2 dynamics; future experiments are required to quantify these processes. The model predictions obtained in this study suggest that IC administration of FGF-2 via either a single bolus or repetitive injections causes a transient increase (time scale of hours) in myocardial FGF-2 concentration if the endogenous level of free interstitial FGF-2 is low enough to allow permeation of FGF-2 molecules from the microvascular to the interstitial spaces. The model shows that the majority (64%) of the extracellular FGF-2 ligands are located within the interstitium, and similar fractions are found in the basement membrane and extracellular matrix. Among the FGF-2 molecules found within the interstitium, 2% are free and 98% are bound to interstitial heparan sulfate proteoglycans. These results support the theory of extracellular control of the bioavailability of FGF-2 via dynamic storage of FGF-2 within the basement membrane and extracellular matrix.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号