首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   3篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2016年   3篇
  2014年   1篇
  2013年   3篇
  2012年   6篇
  2011年   8篇
  2010年   5篇
  2009年   6篇
  2008年   8篇
  2007年   4篇
  2006年   7篇
  2005年   7篇
  2004年   7篇
  2003年   6篇
  2002年   9篇
  2001年   10篇
  2000年   8篇
  1999年   7篇
  1993年   1篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1989年   4篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
排序方式: 共有126条查询结果,搜索用时 15 毫秒
11.
12.
The analysis of alleles and genotypes frequencies of 14 SNP in genes of rennin-angiotensin system (REN, AGT, AGTR1, AGTR2, BKR2, ADRB2) and hemostasis system (FGB, F2, F5, F7, ITGB3, SERPINE1, MTHFR), as well as ACE insertion-deletion polymorphism in patients with stroke comparing to healthy controls matched by age, sex and ethnicity has been carried out. The genotyping procedure included the amplification of selected gene sequences following by hybridization of fluorescently labeled fragments with SNP-specific DNA probes. The analysis of allele frequencies of each gene separately revealed no statistically significant differences between groups of patients with stroke and healthy donors. Also the complex study has been performed to estimate the contribution of rennin-angiotensin system and hemostasis system genes to the genetic susceptibility to ischemic stroke among Russians from Central Russia using method MDR (Multifactor Dimensionality Reduction). The combination with increased risk for development of ischemic stroke was presented by complex genotype FGB G/- x ACE I/- x MTHFR C/- x SERPINE1 5G/5G (p = 0.03, OR = 2.4, 95% CI 1.1-5.3), which frequency was statistically significant higher in patients with stroke compared to healthy control.  相似文献   
13.
The insertion/deletion (I/D) polymorphism of the angiotensin-converting enzyme (ACE) gene was studied in patients with coronary heart disease (CHD) and healthy individuals randomly sampled from the Moscow population. The ACE gene proved to be associated with the plasma apolipoprotein B (ApoB) content in CHD patients, but not associated with HCD development in individuals with elevated serum cholesterol and triglycerides. An association was not revealed between the alleles of the ACE gene and hypertension in CHD patients.  相似文献   
14.
15.
16.
20-hydroxyvitamin D(2) [20(OH)D(2)] inhibits DNA synthesis in epidermal keratinocytes, melanocytes, and melanoma cells in a dose- and time-dependent manner. This inhibition is dependent on cell type, with keratinocytes and melanoma cells being more sensitive than normal melanocytes. The antiproliferative activity of 20(OH)D(2) is similar to that of 1,25(OH)(2)D(3) and of newly synthesized 1,20(OH)(2)D(2) but significantly higher than that of 25(OH)D(3). 20(OH)D(2) also displays tumorostatic effects. In keratinocytes 20(OH)D(2) inhibits expression of cyclins and stimulates involucrin expression. It also stimulates CYP24 expression, however, to a significantly lower degree than that by 1,25(OH)(2)D(3) or 25(OH)D(3). 20(OH)D(2) is a poor substrate for CYP27B1 with overall catalytic efficiency being 24- and 41-fold lower than for 25(OH)D(3) with the mouse and human enzymes, respectively. No conversion of 20(OH)D(2) to 1,20(OH)(2)D(2) was detected in intact HaCaT keratinocytes. 20(OH)D(2) also demonstrates anti-leukemic activity but with lower potency than 1,25(OH)(2)D(3). The phenotypic effects of 20(OH)D(2) are mediated through interaction with the vitamin D receptor (VDR) as documented by attenuation of cell proliferation after silencing of VDR, by enhancement of the inhibitory effect through stable overexpression of VDR and by the demonstration that 20(OH)D(2) induces time-dependent translocation of VDR from the cytoplasm to the nucleus at a comparable rate to that for 1,25(OH)(2)D(3). In vivo tests show that while 1,25(OH)(2)D(3) at doses as low as 0.8 μg/kg induces calcium deposits in the kidney and heart, 20(OH)D(2) is devoid of such activity even at doses as high as 4 μg/kg. Silencing of CY27B1 in human keratinocytes showed that 20(OH)D(2) does not require its transformation to 1,20(OH)(2)D(2) for its biological activity. Thus 20(OH)D(2) shows cell-type dependent antiproliferative and prodifferentiation activities through activation of VDR, while having no detectable toxic calcemic activity, and is a poor substrate for CYP27B1.  相似文献   
17.
18.
In murine skin, after depilation-induced anagen, there was a differential spatial and temporal expression of pro-opiomelanocortin (POMC) mRNA, of the POMC-derived peptides beta-endorphin, ACTH, beta-MSH, and alpha-MSH, and of the prohormone convertases PC1 and PC2 in epidermal and hair follicle keratinocytes and in the cells of sebaceous units. Using a combination of in situ hybridization histochemistry and immunohistochemistry, we found cell-specific variations in the expression of POMC mRNA that were consistent with immunoreactivities for POMC-derived peptides. Cells that contained POMC peptide immunoreactivity (IR) also expressed POMC mRNA, and where the IR increased there was a parallel increase in mRNA. The levels of PC1-IR and PC2-IR also showed cell-specific variations and were present in the same cells that contained the POMC peptides. Based on the cleavage specificities of these convertases and on the spatial and temporal expression of the convertases and of ACTH, beta-endorphin, beta-MSH, and alpha-MSH, we can infer that the activities of PC1 and PC2 are responsible for the cell-specific differential processing of POMC in murine skin.  相似文献   
19.
The discovery that 7-dehydrocholesterol (7DHC) is an excellent substrate for cytochrome P450scc (CYP11A1) opens up new possibilities in biochemistry. To elucidate its biological significance we tested ex vivo P450scc-dependent metabolism of 7DHC by tissues expressing high and low levels of P450scc activity, placenta and epidermal keratinocytes, respectively. Incubation of human placenta fragments with 7DHC led to its conversion to 7-dehydropregnenolone (7DHP), which was inhibited by dl-aminoglutethimide, and stimulated by forskolin. Final proof for P450scc involvement was provided in isolated placental mitochondria where production of 7DHP was almost completely inhibited by 22R-hydroxycholesterol. 7DHC was metabolized by placental mitochondria at a faster rate than exogenous cholesterol, under both limiting and saturating conditions of substrate transport, consistent with higher catalytic efficiency (k(cat)/K(m)) with 7DHC as substrate than with cholesterol. Ex vivo experiments showed five 5,7-dienal intermediates with MS spectra of dihydroxy and mono-hydroxy-7DHC and retention time corresponding to 20,22(OH)(2)7DHC and 22(OH)7DHC. The chemical structure of 20,22(OH)(2)7DHC was defined by NMR. 7DHP was further metabolized by either placental fragments or placental microsomes to 7-dehydroprogesterone as defined by UV, MS and NMR, and to an additional product with a 5,7-dienal structure and MS corresponding to hydroxy-7DHP. Furthermore, epidermal keratinocytes transformed either exogenous or endogenous 7DHC to 7DHP. 7DHP inhibited keratinocytes proliferation, while the product of its pholytic transformation, pregcalciferol, lost this capability. In conclusion, tissues expressing P450scc can metabolize 7DHC to biologically active 7DHP with 22(OH)7DHC and 20,22(OH)(2)7DHC serving as intermediates, and with further metabolism to 7-dehydroprogesterone and (OH)7DHP.  相似文献   
20.
In cultured cells of the Bomirski Ab amelanotic hamster melanoma line, the substrates of tyrosinase, L-tyrosine, and L-DOPA induce the melanogenic pathway. In this report, we demonstrate that these substrates regulate the subcellular apparatus involved in their own metabolism and that this regulation is under the dynamic control of one of the components of this apparatus, tyrosinase, via tyrosine hydroxylase activity. Culturing cells with nontoxic but melanogenically inhibitory levels of phenylthiourea (PTU; 100 microM) strongly inhibits induction of both the tyrosine hydroxylase and DOPA oxidase activities of tyrosinase by L-tyrosine (200 microM) but has no effect on the induction of either activity by L-DOPA (50 microM). De novo synthesis of premelanosomes precedes the onset of tyrosine-induced melanogenesis. Thereafter, increases in the population of melanosomes (likewise inhibited by PTU) correlate positively with increases in tyrosinase activity induced by L-tyrosine. Melanogenesis induced by L-DOPA in the absence of L-tyrosine is rate-limited not by tyrosinase but by inadequate melanosome synthesis. Our findings indicate that in Bomirski Ab amelanotic hamster melanoma cells the synthesis of the subcellular apparatus of melanogenesis is initiated by L-tyrosine and is regulated further by tyrosinase and L-DOPA, which serves as a second messenger subsequent to tyrosine hydroxylase activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号