首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41968篇
  免费   3009篇
  国内免费   8篇
  2023年   310篇
  2022年   514篇
  2021年   991篇
  2020年   786篇
  2019年   954篇
  2018年   1312篇
  2017年   1249篇
  2016年   1713篇
  2015年   2211篇
  2014年   2376篇
  2013年   3025篇
  2012年   3497篇
  2011年   3169篇
  2010年   2104篇
  2009年   1734篇
  2008年   2278篇
  2007年   2131篇
  2006年   1983篇
  2005年   1705篇
  2004年   1668篇
  2003年   1489篇
  2002年   1389篇
  2001年   713篇
  2000年   651篇
  1999年   551篇
  1998年   390篇
  1997年   285篇
  1996年   272篇
  1995年   272篇
  1994年   174篇
  1993年   192篇
  1992年   289篇
  1991年   239篇
  1990年   218篇
  1989年   188篇
  1988年   159篇
  1987年   179篇
  1986年   147篇
  1985年   141篇
  1984年   156篇
  1983年   97篇
  1982年   110篇
  1981年   90篇
  1980年   76篇
  1979年   83篇
  1978年   68篇
  1977年   65篇
  1975年   55篇
  1974年   75篇
  1973年   49篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
We report on atomistic simulation of the folding of a natively-knotted protein, MJ0366, based on a realistic force field. To the best of our knowledge this is the first reported effort where a realistic force field is used to investigate the folding pathways of a protein with complex native topology. By using the dominant-reaction pathway scheme we collected about 30 successful folding trajectories for the 82-amino acid long trefoil-knotted protein. Despite the dissimilarity of their initial unfolded configuration, these trajectories reach the natively-knotted state through a remarkably similar succession of steps. In particular it is found that knotting occurs essentially through a threading mechanism, involving the passage of the C-terminal through an open region created by the formation of the native -sheet at an earlier stage. The dominance of the knotting by threading mechanism is not observed in MJ0366 folding simulations using simplified, native-centric models. This points to a previously underappreciated role of concerted amino acid interactions, including non-native ones, in aiding the appropriate order of contact formation to achieve knotting.  相似文献   
992.
993.
994.
Autophagy is a highly conserved cellular process by which cytoplasmic components are sequestered in autophagosomes and delivered to lysosomes for degradation. As a major intracellular degradation and recycling pathway, autophagy is crucial for maintaining cellular homeostasis as well as remodeling during normal development, and dysfunctions in autophagy have been associated with a variety of pathologies including cancer, inflammatory bowel disease and neurodegenerative disease. Stem cells are unique in their ability to self-renew and differentiate into various cells in the body, which are important in development, tissue renewal and a range of disease processes. Therefore, it is predicted that autophagy would be crucial for the quality control mechanisms and maintenance of cellular homeostasis in various stem cells given their relatively long life in the organisms. In contrast to the extensive body of knowledge available for somatic cells, the role of autophagy in the maintenance and function of stem cells is only beginning to be revealed as a result of recent studies. Here we provide a comprehensive review of the current understanding of the mechanisms and regulation of autophagy in embryonic stem cells, several tissue stem cells (particularly hematopoietic stem cells), as well as a number of cancer stem cells. We discuss how recent studies of different knockout mice models have defined the roles of various autophagy genes and related pathways in the regulation of the maintenance, expansion and differentiation of various stem cells. We also highlight the many unanswered questions that will help to drive further research at the intersection of autophagy and stem cell biology in the near future.  相似文献   
995.
Environmental strain Burkholderia sp. DNT mineralizes the xenobiotic compound 2,4-dinitrotoluene (DNT) owing to the catabolic dnt genes borne by plasmid DNT, but the process fails to promote significant growth. To investigate this lack of physiological return of such an otherwise complete metabolic route, cells were exposed to DNT under various growth conditions and the endogenous formation of reactive oxygen species (ROS) monitored in single bacteria. These tests revealed the buildup of a strong oxidative stress in the population exposed to DNT. By either curing the DNT plasmid or by overproducing the second activity of the biodegradation route (DntB) we could trace a large share of ROS production to the first reaction of the route, which is executed by the multicomponent dioxygenase encoded by the dntA gene cluster. Naphthalene, the ancestral substrate of the dioxygenase from which DntA has evolved, also caused significant ROS formation. That both the old and the new substrate brought about a considerable cellular stress was indicative of a still-evolving DntA enzyme which is neither optimal any longer for naphthalene nor entirely advantageous yet for growth of the host strain on DNT. We could associate endogenous production of ROS with likely error-prone repair mechanisms of DNA damage, and the ensuing stress-induced mutagenesis in cells exposed to DNT. It is thus plausible that the evolutionary roadmap for biodegradation of xenobiotic compounds like DNT was largely elicited by mutagenic oxidative stress caused by faulty reactions of precursor enzymes with novel but structurally related substrates-to-be.  相似文献   
996.
We have elucidated a novel mechanism through which the autophagy-specific class III phosphatidylinositol 3-kinase (PtdIns3K) complex can be recruited to the PAS in mammalian cells, through the interaction between BECN1 and the vacuole membrane protein 1 (VMP1), an integral autophagosomal membrane protein. This interaction involves the binding between the C-terminal 20 amino acids of the VMP1 hydrophilic domain, which we have named the VMP1 autophagy-related domain (VMP1-AtgD), and the BH3 domain of BECN1. The association between these two proteins allows the formation of the autophagy-specific PtdIns3K complex, which activity favors the generation of phosphatidylinositol-3-phosphate (PtdIns3P) and the subsequent association of the autophagy-related (ATG) proteins, including ATG16L1, with the phagophore membranes. Therefore, VMP1 regulates the PtdIns3K activity on the phagophore membrane through its interaction with BECN1. Our data provide a novel model describing one of the key steps in phagophore assembly site (PAS) formation and autophagy regulation, and positions VMP1 as a new interactor of the autophagy-specific PtdIns3K complex in mammalian cells.  相似文献   
997.
Inflammation has been linked to multiple degenerative and acute diseases as well as the aging process. Moreover, mitochondrial alterations play a central role in these processes. Mitochondria have an important role in pro-inflammatory signaling; similarly, pro-inflammatory mediators may also alter mitochondrial function. Both of these processes increase mitochondrial oxidative stress, promoting a vicious inflammatory cycle. Additionally, damage-associated molecular patterns derived from mitochondria could contribute to inflammasome formation and caspase-1 activation, while alterations in mitochondrial autophagy may cause inflammation. Strategies aimed at controlling excessive oxidative stress within mitochondria may represent both preventive and therapeutic interventions in inflammation.  相似文献   
998.
Understanding of protein–urea interactions is one of the greatest challenges to modern structural protein chemistry. Based in enzyme kinetics experiments and 1H NMR spectroscopic analysis we proposed that urea, at low concentrations, directly interacts with the protonated histidines of the active center of RNase A, following a simple model of competitive inhibition. These results were supported by theoretical analysis based on the frontier molecular orbital theory and suggest that urea might establish a favorable interaction with the cationic amino acids. Our experimental evidence and theoretical analysis indicate that the initials steps of the molecular mechanism of Urea–RNase A interaction passes through the establishment of a three center four electron adduct. Also, our results would explain the observed disruption of the 1H NMR signals corresponding to H12 and H119 (involved in catalysis) of the RNase A studied in the presence of urea. Our interaction model of urea–amino acids (cationic) can be extended to explain the inactivation of other enzymes with cationic amino acids at the active site.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号