全文获取类型
收费全文 | 160759篇 |
免费 | 10938篇 |
国内免费 | 27篇 |
专业分类
171724篇 |
出版年
2023年 | 896篇 |
2022年 | 849篇 |
2021年 | 1916篇 |
2020年 | 1709篇 |
2019年 | 1778篇 |
2018年 | 4087篇 |
2017年 | 3720篇 |
2016年 | 5101篇 |
2015年 | 7204篇 |
2014年 | 7443篇 |
2013年 | 10012篇 |
2012年 | 12019篇 |
2011年 | 11084篇 |
2010年 | 7153篇 |
2009年 | 5508篇 |
2008年 | 9051篇 |
2007年 | 8883篇 |
2006年 | 8156篇 |
2005年 | 7492篇 |
2004年 | 7085篇 |
2003年 | 6459篇 |
2002年 | 6034篇 |
2001年 | 3430篇 |
2000年 | 3345篇 |
1999年 | 2845篇 |
1998年 | 1260篇 |
1997年 | 995篇 |
1996年 | 881篇 |
1995年 | 880篇 |
1994年 | 833篇 |
1993年 | 660篇 |
1992年 | 1734篇 |
1991年 | 1578篇 |
1990年 | 1423篇 |
1989年 | 1342篇 |
1988年 | 1275篇 |
1987年 | 1107篇 |
1986年 | 1010篇 |
1985年 | 1087篇 |
1984年 | 1002篇 |
1983年 | 794篇 |
1982年 | 651篇 |
1981年 | 596篇 |
1980年 | 552篇 |
1979年 | 794篇 |
1978年 | 663篇 |
1977年 | 564篇 |
1975年 | 622篇 |
1974年 | 653篇 |
1973年 | 672篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
We assessed the role of nutrients and disturbance experienced by mothers (maternal effects) in the growth of progeny in a pot experiment using two Plantago species. Photosynthetic capacity, biomass allocation and fecundity were measured. Offspring of plants grown in nutrient poor conditions produced more leaves, spikes and longer leaves and in case of P. lanceolata , they had also higher photosynthetic capacity. The progeny of P. media mothers that had resprouted after disturbance was favored in nutrient poor conditions whereas the progeny of undisturbed plants was favored in nutrient rich conditions.
This study demonstrates that maternal effects may play a role in the success of either a seeding or a resprouting strategy in environments with different nutrient availability. Moreover, we showed that alteration of photosynthetic capacity, even during adult stages, is a mechanism through which maternal plants may impact their progeny. 相似文献
This study demonstrates that maternal effects may play a role in the success of either a seeding or a resprouting strategy in environments with different nutrient availability. Moreover, we showed that alteration of photosynthetic capacity, even during adult stages, is a mechanism through which maternal plants may impact their progeny. 相似文献
992.
Cecilia Andrésen Shah Jalal Daniel Aili Yi Wang Sohidul Islam Anngelica Jarl Bo Liedberg Bengt Wretlind Lars‐Göran Mårtensson Maria Sunnerhagen 《Protein science : a publication of the Protein Society》2010,19(4):680-692
The self‐assembling MexA‐MexB‐OprM efflux pump system, encoded by the mexO operon, contributes to facile resistance of Pseudomonas aeruginosa by actively extruding multiple antimicrobials. MexR negatively regulates the mexO operon, comprising two adjacent MexR binding sites, and is as such highly targeted by mutations that confer multidrug resistance (MDR). To understand how MDR mutations impair MexR function, we studied MexR‐wt as well as a selected set of MDR single mutants distant from the proposed DNA‐binding helix. Although DNA affinity and MexA‐MexB‐OprM repression were both drastically impaired in the selected MexR‐MDR mutants, MexR‐wt bound its two binding sites in the mexO with high affinity as a dimer. In the MexR‐MDR mutants, secondary structure content and oligomerization properties were very similar to MexR‐wt despite their lack of DNA binding. Despite this, the MexR‐MDR mutants showed highly varying stabilities compared with MexR‐wt, suggesting disturbed critical interdomain contacts, because mutations in the DNA‐binding domains affected the stability of the dimer region and vice versa. Furthermore, significant ANS binding to MexR‐wt in both free and DNA‐bound states, together with increased ANS binding in all studied mutants, suggest that a hydrophobic cavity in the dimer region already shown to be involved in regulatory binding is enlarged by MDR mutations. Taken together, we propose that the biophysical MexR properties that are targeted by MDR mutations—stability, domain interactions, and internal hydrophobic surfaces—are also critical for the regulation of MexR DNA binding. 相似文献
993.
994.
995.
Algara-Suárez P Espinosa-Tanguma R 《Biochemical and biophysical research communications》2004,314(2):597-601
In this study, guinea pig tracheal smooth muscle pre-contracted with histamine was relaxed by the addition of 100microM 8Br-cGMP, a non-hydrolyzable and cell-permeable analog for cGMP. This effect was not sensitive to cGMP-dependent protein kinase (PKG) inhibitors, whereas it was partially blocked by cAMP-dependent protein kinase (PKA) inhibitors. The relaxation observed was also reverted up to 50+/-8.5% by iberiotoxin, a selective inhibitor of large conductance, calcium-activated potassium channels (BK(Ca)). Our results indicate that there exists a crosstalk mechanism between cAMP and cGMP signaling pathways which lead to relaxation of guinea pig tracheal smooth muscle and also that BK(Ca) channels are involved to a certain extent in this phenomenon. 相似文献
996.
Multivesicular bodies (MVBs) are endocytic compartments that enclose intraluminal vesicles (ILVs) formed by inward budding from the limiting membrane of endosomes. In T lymphocytes, these ILV contain Fas ligand (FasL) and are secreted as ''lethal exosomes'' following activation-induced fusion of the MVB with the plasma membrane. Diacylglycerol (DAG) and diacylglycerol kinase α (DGKα) regulate MVB maturation and polarized traffic, as well as subsequent secretion of pro-apoptotic exosomes, but the molecular basis underlying these phenomena remains unclear. Here we identify protein kinase D (PKD) family members as DAG effectors involved in MVB genesis and secretion. We show that the inducible secretion of exosomes is enhanced when a constitutively active PKD1 mutant is expressed in T lymphocytes, whereas exosome secretion is impaired in PKD2-deficient mouse T lymphoblasts and in PKD1/3-null B cells. Analysis of PKD2-deficient T lymphoblasts showed the presence of large, immature MVB-like vesicles and demonstrated defects in cytotoxic activity and in activation-induced cell death. Using pharmacological and genetic tools, we show that DGKα regulates PKD1/2 subcellular localization and activation. Our studies demonstrate that PKD1/2 is a key regulator of MVB maturation and exosome secretion, and constitutes a mediator of the DGKα effect on MVB secretory traffic.Exosomes are nanovesicles that form as intraluminal vesicles (ILVs) inside multivesicular bodies (MVBs) and are then secreted by numerous cell types.1 ILVs are generated by inward budding of late endosome limiting membrane in a precisely regulated maturation process.2, 3 Two main pathways are involved in MVB maturation.4, 5 In addition to the ESCRT (endosomal complex required for traffic) proteins,6 there is increasing evidence that lipids such as lyso-bisphosphatidic acid (LBPA),7 ceramides8 and diacylglycerol (DAG)9 contribute to this membrane invagination process.Exosomes participate in many biological processes related to T-cell receptor (TCR)-triggered immune responses, including T lymphocyte-mediated cytotoxicity and activation-induced cell death (AICD), antigen presentation and intercellular miRNA exchange.10, 11, 12, 13, 14, 15 The discovery of exosome involvement in these responses increased interest in the regulation of exosome biogenesis and secretory traffic, with special attention to the contribution of lipids such as ceramide and DAG, as well as DAG-binding proteins.14, 16, 17, 18, 19, 20, 21 These studies suggest that positive and negative DAG regulators may control secretory traffic. By transforming DAG into phosphatidic acid (PA), diacylglycerol kinase α (DGKα) is essential for the negative control of DAG function in T lymphocytes.22 DGKα translocates transiently to the T-cell membrane after human muscarinic type 1 receptor (HM1R) triggering or to the immune synapse (IS) after TCR stimulation; at these subcellular locations, DGKα acts as a negative modulator of phospholipase C (PLC)-generated DAG.23, 24The secretory vesicle pathway involves several DAG-controlled checkpoints at which DGKα may act; these include vesicle formation and fission at the trans-Golgi network (TGN), MVB maturation, as well as their transport, docking and fusion to the plasma membrane.9, 16, 17, 18, 19, 20 The molecular components that regulate some of these trafficking processes include protein kinase D (PKD) family members.21 PKD1 activity, for instance, regulates fission of transport vesicles from TGN via direct interaction with the pre-existing DAG pool at this site.19 The cytosolic serine/threonine kinases PKD1, PKD2 and PKD3(ref. 21) are expressed in a wide range of cells, with PKD2 the most abundant isotype in T lymphocytes.25, 26 PKD have two DAG-binding domains (C1a and C1b) at the N terminus,21 which mediate PKD recruitment to cell membranes. Protein kinase C (PKC) phosphorylation at the PKD activation loop further promotes PKD autophosphorylation and activation.27Based on our previous studies showing DGKα regulation of DAG in MVB formation and exosome secretion,9, 14, 28 and the identification of PKD1/2 association to MVB,14 we hypothesized that DGKα control of DAG mediates these events, at least in part, through PKD. Here we explored whether, in addition to its role in vesicle fission from TGN,19 PKD regulates other steps in the DAG-controlled secretory traffic pathway. Using PKD-deficient cell models, we analyzed the role of PKD1/2 in MVB formation and function, and demonstrate their implication in exosome secretory traffic. 相似文献
997.
Optical absorption spectroscopy was used to characterize the acid-induced conformational transition of horse heart ferrocytochrome c in the presence of urea. By using linear extrapolation to zero denaturant concentration, an apparent pK value for denaturation was found to be 0.86 +/- 0.07 at 25 degrees C. Visible absorption spectra in the presence of high urea concentration indicate that the dominant population is a high-spin, five-coordinate form under acidic conditions. Ferricytochrome c, used as a model reference system, shows a linear dependence of pK values versus urea concentration in the range from 0 to 4.1 M. Our data also indicate that even at a pH below 2 the iron-sulfur bond in ferrocytochrome c is present. 相似文献
998.
Nicolas A. Gillet Lucy Cook Daniel J. Laydon Carol Hlela Kristien Verdonck Carolina Alvarez Eduardo Gotuzzo Daniel Clark Lourdes Farré Achiléa Bittencourt Becca Asquith Graham P. Taylor Charles R. M. Bangham 《PLoS pathogens》2013,9(4)
Human T-lymphotropic Virus-1 (HTLV-1) is a retrovirus that persists lifelong by driving clonal proliferation of infected T-cells. HTLV-1 causes a neuroinflammatory disease and adult T-cell leukemia/lymphoma. Strongyloidiasis, a gastrointestinal infection by the helminth Strongyloides stercoralis, and Infective Dermatitis associated with HTLV-1 (IDH), appear to be risk factors for the development of HTLV-1 related diseases. We used high-throughput sequencing to map and quantify the insertion sites of the provirus in order to monitor the clonality of the HTLV-1-infected T-cell population (i.e. the number of distinct clones and abundance of each clone). A newly developed biodiversity estimator called “DivE” was used to estimate the total number of clones in the blood. We found that the major determinant of proviral load in all subjects without leukemia/lymphoma was the total number of HTLV-1-infected clones. Nevertheless, the significantly higher proviral load in patients with strongyloidiasis or IDH was due to an increase in the mean clone abundance, not to an increase in the number of infected clones. These patients appear to be less capable of restricting clone abundance than those with HTLV-1 alone. In patients co-infected with Strongyloides there was an increased degree of oligoclonal expansion and a higher rate of turnover (i.e. appearance and disappearance) of HTLV-1-infected clones. In Strongyloides co-infected patients and those with IDH, proliferation of the most abundant HTLV-1+ T-cell clones is independent of the genomic environment of the provirus, in sharp contrast to patients with HTLV-1 infection alone. This implies that new selection forces are driving oligoclonal proliferation in Strongyloides co-infection and IDH. We conclude that strongyloidiasis and IDH increase the risk of development of HTLV-1-associated diseases by increasing the rate of infection of new clones and the abundance of existing HTLV-1+ clones. 相似文献
999.
Patterns and controls of the variability of radiation use efficiency and primary productivity across terrestrial ecosystems 总被引:2,自引:0,他引:2
Martín F. Garbulsky Josep Peñuelas Dario Papale Jonas Ardö Michael L. Goulden Gerard Kiely Andrew D. Richardson Eyal Rotenberg Elmar M. Veenendaal Iolanda Filella 《Global Ecology and Biogeography》2010,19(2):253-267
Aim The controls of gross radiation use efficiency (RUE), the ratio between gross primary productivity (GPP) and the radiation intercepted by terrestrial vegetation, and its spatial and temporal variation are not yet fully understood. Our objectives were to analyse and synthesize the spatial variability of GPP and the spatial and temporal variability of RUE and its climatic controls for a wide range of vegetation types. Location A global range of sites from tundra to rain forest. Methods We analysed a global dataset on photosynthetic uptake and climatic variables from 35 eddy covariance (EC) flux sites spanning between 100 and 2200 mm mean annual rainfall and between ?13 and 26°C mean annual temperature. RUE was calculated from the data provided by EC flux sites and remote sensing (MODIS). Results Rainfall and actual evapotranspiration (AET) positively influenced the spatial variation of annual GPP, whereas temperature only influenced the GPP of forests. Annual and maximum RUE were also positively controlled primarily by annual rainfall. The main control parameters of the growth season variation of gross RUE varied for each ecosystem type. Overall, the ratio between actual and potential evapotranspiration and a surrogate for the energy balance explained a greater proportion of the seasonal variation of RUE than the vapour pressure deficit (VPD), AET and precipitation. Temperature was important for determining the intra‐annual variability of the RUE at the coldest energy‐limited sites. Main conclusions Our analysis supports the idea that the annual functioning of vegetation that is adapted to its local environment is more constrained by water availability than by temperature. The spatial variability of annual and maximum RUE can be largely explained by annual precipitation, more than by vegetation type. The intra‐annual variation of RUE was mainly linked to the energy balance and water availability along the climatic gradient. Furthermore, we showed that intra‐annual variation of gross RUE is only weakly influenced by VPD and temperature, contrary to what is frequently assumed. Our results provide a better understanding of the spatial and temporal controls of the RUE and thus could lead to a better estimation of ecosystem carbon fixation and better modelling. 相似文献
1000.
Laczik M Tukacs E Uzonyi B Domokos B Doma Z Kiss M Horváth A Batta Z Maros-Szabó Z Török Z 《Bioinformation》2012,8(2):107-109
The ever evolving Next Generation Sequencing technology is calling for new and innovative ways of data processing and visualization. Following a detailed survey of the current needs of researchers and service providers, the authors have developed GenoViewer: a highly user-friendly, easy-to-operate SAM/BAM viewer and aligner tool. GenoViewer enables fast and efficient NGS assembly browsing, analysis and read mapping. It is highly customized, making it suitable for a wide range of NGS related tasks. Due to its relatively simple architecture, it is easy to add specialised visualization functionalities, facilitating further customised data analysis. The software's source code is freely available; it is open for project and task-specific modifications. AVAILABILITY: The database is available for free at http://www.genoviewer.com/ 相似文献