首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4076篇
  免费   304篇
  国内免费   1篇
  4381篇
  2024年   5篇
  2023年   43篇
  2022年   80篇
  2021年   143篇
  2020年   111篇
  2019年   114篇
  2018年   137篇
  2017年   133篇
  2016年   168篇
  2015年   232篇
  2014年   270篇
  2013年   301篇
  2012年   361篇
  2011年   316篇
  2010年   200篇
  2009年   187篇
  2008年   216篇
  2007年   225篇
  2006年   164篇
  2005年   173篇
  2004年   178篇
  2003年   124篇
  2002年   143篇
  2001年   36篇
  2000年   19篇
  1999年   32篇
  1998年   27篇
  1997年   40篇
  1996年   20篇
  1995年   21篇
  1994年   17篇
  1993年   15篇
  1992年   8篇
  1991年   6篇
  1990年   10篇
  1989年   9篇
  1988年   5篇
  1987年   9篇
  1985年   6篇
  1984年   12篇
  1983年   5篇
  1982年   9篇
  1981年   10篇
  1980年   3篇
  1979年   3篇
  1977年   9篇
  1976年   5篇
  1975年   3篇
  1974年   3篇
  1961年   3篇
排序方式: 共有4381条查询结果,搜索用时 15 毫秒
921.
922.
Screening of Argentine marine algae for antimicrobial activity   总被引:2,自引:2,他引:0  
  相似文献   
923.
1. Glucocorticoid hormones affect several functions of the spinal cord, such as synaptic transmission, biogenic amine content, lipid metabolism, and the activity of some enzymes (ornithine decarboxylase, glycerolphosphate dehydrogenase), indicating that this tissue is a target of adrenal hormones. 2. Corticosterone, the main glucocorticoid of the rat, is detected at all regional levels of the spinal cord, and cold stress increases this steroid, predominantly in the cervical regions. 3. Intracellular glucocorticoid receptors have been found in the spinal cord, with higher concentrations in the cervical and lumbar enlargements. Prima facie, these receptors presented biochemical, stereospecifical, and physicochemical properties similar to those of receptors found in other regions of the nervous system. The prevalent form in the spinal cord is the type II receptor, although type I is also present in small amounts. 4. The type II glucocorticoid receptor of the spinal cord shows an affinity lower (Kd 3.5 nM) than that of the hippocampal type II site (Kd 0.7 nM) when incubated with [3H]dexamethasone. This condition may impair the nuclear translocation of the spinal cord receptor. 5. Another peculiar property of spinal cord type II site is a greater affinity for DNA-cellulose binding than the hippocampal receptor during heat-induced transformation. Also, the spinal cord receptor shows resistance to the action of RNAse A, an enzyme which increases DNA-cellulose binding of the hippocampal receptor, indicating that both receptors may be structurally different. 6. Therefore, it is possible that a different subclass of type II, or "classical glucocorticoid receptor," is present in the spinal cord. This possibility makes the cord a useful system for studying diversity of glucocorticoid receptors of the nervous system, especially the relationship between receptor structure and function.  相似文献   
924.
Is it possible to learn and create a first Hidden Markov Model (HMM) without programming skills or understanding the algorithms in detail? In this concise tutorial, we present the HMM through the 2 general questions it was initially developed to answer and describe its elements. The HMM elements include variables, hidden and observed parameters, the vector of initial probabilities, and the transition and emission probability matrices. Then, we suggest a set of ordered steps, for modeling the variables and illustrate them with a simple exercise of modeling and predicting transmembrane segments in a protein sequence. Finally, we show how to interpret the results of the algorithms for this particular problem. To guide the process of information input and explicit solution of the basic HMM algorithms that answer the HMM questions posed, we developed an educational webserver called HMMTeacher. Additional solved HMM modeling exercises can be found in the user’s manual and answers to frequently asked questions. HMMTeacher is available at https://hmmteacher.mobilomics.org, mirrored at https://hmmteacher1.mobilomics.org. A repository with the code of the tool and the webpage is available at https://gitlab.com/kmilo.f/hmmteacher.  相似文献   
925.
Wild animal species living in anthropogenic areas are commonly carriers of antimicrobial‐resistant bacteria (AMRB), but their role in the epidemiology of these bacteria is unclear. Several studies on AMRB in wildlife have been cross‐sectional in design and sampled individual animals at only one point in time. To further understand the role of wildlife in maintaining and potentially transmitting these bacteria to humans and livestock, longitudinal studies are needed in which samples are collected from individual animals over multiple time periods. In Europe, free‐ranging yellow‐legged gulls (Larus michahellis) commonly live in industrialized areas, forage in landfills, and have been found to carry AMRB in their feces. Using bacterial metagenomics and antimicrobial resistance characterization, we investigated the spatial and temporal patterns of AMRB in a nesting colony of yellow‐legged gulls from an industrialized area in southern France. We collected 54 cloacal swabs from 31 yellow‐legged gull chicks in 20 nests on three dates in 2016. We found that AMRB in chicks increased over time and was not spatially structured within the gull colony. This study highlights the complex occurrence of AMRB in a free‐ranging wildlife species and contributes to our understanding of the public health risks and implications associated with ARMB‐carrying gulls living in anthropogenic areas.  相似文献   
926.
Convergent evolution is a central concept in evolutionary theory but the underlying mechanism has been largely debated since On the Origin of Species. Previous hypotheses predict that developmental constraints make some morphologies more likely to arise than others and natural selection discards those of the lowest fitness. However, the quantification of the role and strength of natural selection and developmental constraint in shaping convergent phenotypes on macroevolutionary timescales is challenging because the information regarding performance and development is not directly available. Accordingly, current knowledge of how embryonic development and natural selection drive phenotypic evolution in vertebrates has been extended from studies performed at short temporal scales. We propose here the organization of the tetrapod body-axis as a model system to investigate the developmental origins of convergent evolution over hundreds of millions of years. The quantification of the primary developmental mechanisms driving body-axis organization (i.e. somitogenesis, homeotic effects and differential growth) can be inferred from vertebral counts, and recent techniques of three-dimensional computational biomechanics have the necessary potential to reveal organismal performance even in fossil forms. The combination of both approaches offers a novel and robust methodological framework to test competing hypotheses on the functional and developmental drivers of phenotypic evolution and evolutionary convergence.  相似文献   
927.
Bacterial flagella are nanomachines that enable cells to move at high speeds. Comprising 25 and more different types of proteins, the flagellum is a large supramolecular assembly organized into three widely conserved substructures: a basal body including the rotary motor, a connecting hook, and a long filament. The whole flagellum from Escherichia coli weighs ∼20 MDa, without considering its filament portion, which is by itself a ∼1.6 GDa structure arranged as a multimer of ∼30,000 flagellin protomers. Breakthroughs regarding flagellar structure and function have been achieved in the last few years, mainly because of the revolutionary improvements in 3D cryo-EM methods. This review discusses novel structures and mechanistic insights derived from such high-resolution studies, advancing our understanding of each one of the three major flagellar segments. The rotation mechanism of the motor has been unveiled with unprecedented detail, showing a two-cogwheel machine propelled by a Brownian ratchet device. In addition, by imaging the flagellin-like protomers that make up the hook in its native bent configuration, their unexpected conformational plasticity challenges the paradigm of a two-state conformational rearrangement mechanism for flagellin-fold proteins. Finally, imaging of the filaments of periplasmic flagella, which endow Spirochete bacteria with their singular motility style, uncovered a strikingly asymmetric protein sheath that coats the flagellin core, challenging the view of filaments as simple homopolymeric structures that work as freely whirling whips. Further research will shed more light on the functional details of this amazing nanomachine, but our current understanding has definitely come a long way.  相似文献   
928.
Several human progerias, including Hutchinson-Gilford progeria syndrome (HGPS), are caused by the accumulation at the nuclear envelope of farnesylated forms of truncated prelamin A, a protein that is also altered during normal aging. Previous studies in cells from individuals with HGPS have shown that farnesyltransferase inhibitors (FTIs) improve nuclear abnormalities associated with prelamin A accumulation, suggesting that these compounds could represent a therapeutic approach for this devastating progeroid syndrome. We show herein that both prelamin A and its truncated form progerin/LADelta50 undergo alternative prenylation by geranylgeranyltransferase in the setting of farnesyltransferase inhibition, which could explain the low efficiency of FTIs in ameliorating the phenotypes of progeroid mouse models. We also show that a combination of statins and aminobisphosphonates efficiently inhibits both farnesylation and geranylgeranylation of progerin and prelamin A and markedly improves the aging-like phenotypes of mice deficient in the metalloproteinase Zmpste24, including growth retardation, loss of weight, lipodystrophy, hair loss and bone defects. Likewise, the longevity of these mice is substantially extended. These findings open a new therapeutic approach for human progeroid syndromes associated with nuclear-envelope abnormalities.  相似文献   
929.
Coronatine (COR) is a nonhost-specific phytotoxin that substantially contributes to the virulence of several pathovars (pvs.) of Pseudomonas syringae. The COR gene cluster in P. syringae is generally plasmid-encoded in pvs. atropurpurea, glycinea, morsprunorum, and tomato but chromosomally encoded in pv. maculicola. In the present study, we investigated whether the COR plasmids in four pathovars shared other traits including self-transmissibility, conserved oriV/par loci, and insertion sequences (ISs) known to reside on other plasmids in P. syringae. Three COR plasmids were shown to be self-transmissible, and all COR plasmids shared a related oriV/par region. Two COR plasmids hybridized to IS801, an IS element widely distributed in P. syringae. Further analysis of p4180A, a 90-kb COR plasmid in P. syringae pv. glycinea, indicated that multiple copies of IS801 were present on this plasmid, and all copies mapped outside the COR gene cluster. Sequence analysis of the region adjacent to the COR gene cluster in p4180A indicated the presence of additional IS elements including IS870, IS51, and IS1240. The IS elements borne on p4180A may have contributed to horizontal transfer of the COR gene cluster and the evolution of the COR biosynthetic pathway.  相似文献   
930.
Tankyrase 1 is a poly(ADP-ribose) polymerase (PARP) that participates in a broad range of cellular activities due to interaction with multiple binding partners. Tankyrase 1 recognizes a linear six-amino-acid degenerate motif and, hence, has hundreds of potential target proteins. Binding of partner proteins to tankyrase 1 usually results in their poly(ADP-ribosyl)ation (PARsylation) and can lead to ubiquitylation and proteasomal degradation. However, it is not known how tankyrase 1 PARP activity is regulated. Here we identify GDP-mannose 4,6-dehydratase (GMD) as a binding partner of tankyrase 1. GMD is a cytosolic protein required for the first step of fucose synthesis. We show that GMD is complexed to tankyrase 1 in the cytosol throughout interphase, but its association with tankyrase 1 is reduced upon entry into mitosis, when tankyrase 1 binds to its other partners TRF1 (at telomeres) and NuMA (at spindle poles). In contrast to other binding partners, GMD is not PARsylated by tankyrase 1. Indeed, we show that GMD inhibits tankyrase 1 PARP activity in vitro, dependent on the GMD tankyrase 1 binding motif. In vivo, depletion of GMD led to degradation of tankyrase 1, dependent on the catalytic PARP activity of tankyrase 1. We speculate that association of tankyrase 1 with GMD in the cytosol sequesters tankyrase 1 in an inactive stable form that can be tapped by other target proteins as needed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号