首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4078篇
  免费   305篇
  国内免费   1篇
  2023年   42篇
  2022年   65篇
  2021年   143篇
  2020年   111篇
  2019年   115篇
  2018年   137篇
  2017年   132篇
  2016年   168篇
  2015年   232篇
  2014年   270篇
  2013年   300篇
  2012年   364篇
  2011年   319篇
  2010年   202篇
  2009年   190篇
  2008年   219篇
  2007年   226篇
  2006年   165篇
  2005年   172篇
  2004年   179篇
  2003年   125篇
  2002年   145篇
  2001年   36篇
  2000年   19篇
  1999年   32篇
  1998年   27篇
  1997年   40篇
  1996年   20篇
  1995年   21篇
  1994年   17篇
  1993年   15篇
  1992年   8篇
  1991年   6篇
  1990年   11篇
  1989年   9篇
  1988年   5篇
  1987年   9篇
  1985年   6篇
  1984年   12篇
  1983年   5篇
  1982年   8篇
  1981年   10篇
  1980年   3篇
  1979年   3篇
  1977年   9篇
  1976年   5篇
  1975年   3篇
  1974年   3篇
  1973年   3篇
  1961年   3篇
排序方式: 共有4384条查询结果,搜索用时 15 毫秒
991.
Inhibitors of apoptosis proteins (IAPs) are a highly conserved class of multifunctional proteins. Rac1 is a well-studied Rho GTPase that controls numerous basic cellular processes. While the regulation of nucleotide binding to Rac1 is well understood, the molecular mechanisms controlling Rac1 degradation are not known. Here, we demonstrate X-linked IAP (XIAP) and cellular IAP1 (c-IAP1) directly bind to Rac1 in a nucleotide-independent manner to promote its polyubiquitination at Lys147 and proteasomal degradation. These IAPs are also required for degradation of Rac1 upon CNF1 toxin treatment or RhoGDI depletion. Consistently, downregulation of XIAP or c-IAP1 by various strategies led to an increase in Rac1 protein levels in primary and tumour cells, leading to an elongated morphology and enhanced cell migration. Further, XIAP counteracts Rac1-dependent cellular polarization in the developing zebrafish hindbrain and promotes the delamination of neurons from the normal tissue architecture. These observations unveil an evolutionarily conserved role of IAPs in controlling Rac1 stability thereby regulating the plasticity of cell migration and morphogenesis.  相似文献   
992.
Tankyrase 1 is a poly(ADP-ribose) polymerase (PARP) that participates in a broad range of cellular activities due to interaction with multiple binding partners. Tankyrase 1 recognizes a linear six-amino-acid degenerate motif and, hence, has hundreds of potential target proteins. Binding of partner proteins to tankyrase 1 usually results in their poly(ADP-ribosyl)ation (PARsylation) and can lead to ubiquitylation and proteasomal degradation. However, it is not known how tankyrase 1 PARP activity is regulated. Here we identify GDP-mannose 4,6-dehydratase (GMD) as a binding partner of tankyrase 1. GMD is a cytosolic protein required for the first step of fucose synthesis. We show that GMD is complexed to tankyrase 1 in the cytosol throughout interphase, but its association with tankyrase 1 is reduced upon entry into mitosis, when tankyrase 1 binds to its other partners TRF1 (at telomeres) and NuMA (at spindle poles). In contrast to other binding partners, GMD is not PARsylated by tankyrase 1. Indeed, we show that GMD inhibits tankyrase 1 PARP activity in vitro, dependent on the GMD tankyrase 1 binding motif. In vivo, depletion of GMD led to degradation of tankyrase 1, dependent on the catalytic PARP activity of tankyrase 1. We speculate that association of tankyrase 1 with GMD in the cytosol sequesters tankyrase 1 in an inactive stable form that can be tapped by other target proteins as needed.  相似文献   
993.
Although there is in vivo evidence suggesting a role for glutathione in the metabolism and tissue distribution of vitamin C, no connection with the vitamin C transport systems has been reported. We show here that disruption of glutathione metabolism with buthionine-(S,R)-sulfoximine (BSO) produced a sustained blockade of ascorbic acid transport in rat hepatocytes and rat hepatoma cells. Rat hepatocytes expressed the Na(+)-coupled ascorbic acid transporter-1 (SVCT1), while hepatoma cells expressed the transporters SVCT1 and SVCT2. BSO-treated rat hepatoma cells showed a two order of magnitude decrease in SVCT1 and SVCT2 mRNA levels, undetectable SVCT1 and SVCT2 protein expression, and lacked the capacity to transport ascorbic acid, effects that were fully reversible on glutathione repletion. Interestingly, although SVCT1 mRNA levels remained unchanged in rat hepatocytes made glutathione deficient by in vivo BSO treatment, SVCT1 protein was absent from the plasma membrane and the cells lacked the capacity to transport ascorbic acid. The specificity of the BSO treatment was indicated by the finding that transport of oxidized vitamin C (dehydroascorbic acid) and glucose transporter expression were unaffected by BSO treatment. Moreover, glutathione depletion failed to affect ascorbic acid transport, and SVCT1 and SVCT2 expression in human hepatoma cells. Therefore, our data indicate an essential role for glutathione in controlling vitamin C metabolism in rat hepatocytes and rat hepatoma cells, two cell types capable of synthesizing ascorbic acid, by regulating the expression and subcellular localization of the transporters involved in the acquisition of ascorbic acid from extracellular sources, an effect not observed in human cells incapable of synthesizing ascorbic acid.  相似文献   
994.
Familial hemiplegic migraine type 1 (FHM-1) is a monogenic form of migraine with aura that is characterized by recurrent attacks of a typical migraine headache with transient hemiparesis during the aura phase. In a subset of patients, additional symptoms such as epilepsy and cerebellar ataxia are part of the clinical phenotype. FHM-1 is caused by missense mutations in the CACNA1A gene that encodes the pore-forming subunit of CaV2.1 voltage-gated Ca2 + channels. Although the functional effects of an increasing number of FHM-1 mutations have been characterized, knowledge on the influence of most of these mutations on G protein regulation of channel function is lacking. Here, we explored the effects of G protein-dependent modulation on mutations W1684R and V1696I which cause FHM-1 with and without cerebellar ataxia, respectively. Both mutations were introduced into the human CaV2.1α1 subunit and their functional consequences investigated after heterologous expression in human embryonic kidney 293 (HEK‐293) cells using patch-clamp recordings. When co-expressed along with the human μ-opioid receptor, application of the agonist [d‐Ala2, N‐MePhe4, Gly‐ol]‐enkephalin (DAMGO) inhibited currents through both wild-type (WT) and mutant CaV2.1 channels, which is consistent with the known modulation of these channels by G protein-coupled receptors. Prepulse facilitation, which is a way to characterize the relief of direct voltage-dependent G protein regulation, was reduced by both FHM-1 mutations. Moreover, the kinetic analysis of the onset and decay of facilitation showed that the W1684R and V1696I mutations affect the apparent dissociation and reassociation rates of the Gβγ dimer from the channel complex, suggesting that the G protein-Ca2 + channel affinity may be altered by the mutations. These biophysical studies may shed new light on the pathophysiology underlying FHM-1.  相似文献   
995.
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated pentameric ion channels that account for the effects of nicotine. Recent genetic studies have highlighted the importance of variants of the CHRNA5/A3/B4 genomic cluster in human nicotine dependence. Among these genetic variants those found in non-coding segments of the cluster may contribute to the pathophysiology of tobacco use through alterations in the expression of these genes. To discern the in vivo effects of the cluster, we generated a transgenic mouse overexpressing the human CHRNA5/A3/B4 cluster using a bacterial artificial chromosome. Transgenic mice showed increased functional α3β4-nAChRs in brain regions where these subunits are highly expressed under normal physiological conditions. Moreover, they exhibited increased sensitivity to the pharmacological effects of nicotine along with higher activation of the medial habenula and reduced activation of dopaminergic neurons in the ventral tegmental area after acute nicotine administration. Importantly, transgenic mice showed increased acquisition of nicotine self-administration (0.015 mg/kg per infusion) and a differential response in the progressive ratio test. Our study provides the first in vivo evidence of the involvement of the CHRNA5/A3/B4 genomic cluster in nicotine addiction through modifying the activity of brain regions responsible for the balance between the rewarding and the aversive properties of this drug.  相似文献   
996.
Ustilago maydis displays dimorphic growth, alternating between a saprophytic haploid yeast form and a filamentous dikaryon, generated by mating of haploid cells and which is an obligate parasite. Induction of the dimorphic transition of haploid strains in vitro by change in ambient pH has been used to understand the mechanisms governing this differentiation process. In this study we used suppression subtractive hybridization to generate a cDNA library of U. maydis genes up-regulated in the filamentous form induced in vitro at acid pH. Expression analysis using quantitative RT-PCR showed that the induction of two unigenes identified in this library coincided with the establishment of filamentous growth in the acid pH medium. This expression pattern suggested that they were specifically associated to hyphal development rather than merely acid pH-induced genes. One of these genes, UmRrm75, encodes a protein containing three RNA recognition motifs and glycine-rich repeats and was selected for further study. The UmRrm75 gene contains 4 introns, and produces a splicing variant by a 3'-alternative splicing site within the third exon. Mutants deleted for UmRrm75 showed a slower growth rate than wild type strains in liquid and solid media, and their colonies showed a donut-like morphology on solid medium. Interestingly, although ΔUmRrm75 strains were not affected in filamentous growth induced by acid pH and oleic acid, they exhibited reduced mating, post-mating filamentous growth and virulence. Our data suggest that UmRrm75 is probably involved in cell growth, morphogenesis, and pathogenicity in U. maydis.  相似文献   
997.

Purpose  

At present, many urban areas in Mediterranean climates are coping with water scarcity, facing a growing water demand and a limited conventional water supply. Urban design and planning has so far largely neglected the benefits of rainwater harvesting (RWH) in the context of a sustainable management of this resource. Therefore, the purpose of this study was to identify the most environmentally friendly strategy for rainwater utilization in Mediterranean urban environments of different densities.  相似文献   
998.
Using a streptozotocin-induced type 1 diabetic rat model, we analyzed and separated the effects of hyperglycemia and hyperinsulinemia over the in vivo expression and subcellular localization of hepatic fructose 1,6-bisphosphatase (FBPase) in the multicellular context of the liver. Our data showed that FBPase subcellular localization was modulated by the nutritional state in normal but not in diabetic rats. By contrast, the liver zonation was not affected in any condition. In healthy starved rats, FBPase was localized in the cytoplasm of hepatocytes, whereas in healthy re-fed rats it was concentrated in the nucleus and the cell periphery. Interestingly, despite the hyperglycemia, FBPase was unable to accumulate in the nucleus in hepatocytes from streptozotocin-induced diabetic rats, suggesting that insulin is a critical in vivo modulator. This idea was confirmed by exogenous insulin supplementation to diabetic rats, where insulin was able to induce the rapid accumulation of FBPase within the hepatocyte nucleus. Besides, hepatic FBPase was found phosphorylated only in the cytoplasm, suggesting that the phosphorylation state is involved in the nuclear translocation. In conclusion, insulin and not hyperglycemia plays a crucial role in the nuclear accumulation of FBPase in vivo and may be an important regulatory mechanism that could account for the increased endogenous glucose production of liver of diabetic rodents.  相似文献   
999.
Solanum tuberosum ssp. tuberosum (cv. Spunta) was transformed with a chimeric transgene containing the Potato virus Y (PVY) coat protein (CP) sequence. Screening for PVY resistance under greenhouse conditions yielded over 100 independent candidate lines. Successive field testing of selected lines allowed the identification of two genetically stable PVY-resistant lines, SY230 and SY233, which were further evaluated in field trials at different potato-producing regions in Argentina. In total, more than 2,000 individuals from each line were tested along a 6-year period. While no or negligible PVY infection was observed in the transgenic lines, infection rates of control plants were consistently high and reached levels of up to 70-80%. Parallel field studies were performed in virus-free environments to assess the agronomical performance of the selected lines. Tubers collected from these assays exhibited agronomical traits and biochemical compositions indistinguishable from those of the non-transformed Spunta cultivar. In addition, an interspecific out-crossing trial to determine the magnitude of possible natural gene flow between transgenic line SY233 and its wild relative Solanum chacoense was performed. This trial yielded negative results, suggesting an extremely low probability for such an event to occur.  相似文献   
1000.
A number of studies have reported that extremely low frequency magnetic fields (ELF-MF) can modulate proliferative processes in vitro; however, the transduction mechanisms implicated in such phenomena remain to be identified. The present study was aimed to determine whether a 50 Hz, 100 μT MF can induce cell proliferation in the human neuroblastoma line NB69, and whether the signaling pathway MAPK-ERK1/2 (Mitogen-Activated Protein Kinase - Extracellular-Signal-Regulated Kinase 1 and 2) is involved in that proliferative response. The cultures were exposed intermittently or continuously to the MF for a 63-hour duration. The continuous treatment did not induce significant changes in cell proliferation. In contrast, intermittent exposure caused statistically significant increase in the percent of cells in phase S of the cell cycle, followed by a significant increase in cell number. The intermittent treatment also induced an early, transient and repetitive activation of ERK1/2 that could be involved in the proliferative effects. In fact, both the proliferative response and the repeated activation of ERK1/2 were blocked by PD98059, the specific inhibitor of MEK (ERK kinases 1 and 2). Taken together, the described results indicate that a 50 Hz, 100 μT MF can stimulate proliferation in NB69 cells by triggering MAPK-ERK1/ 2 signaling at each of the "On" periods of an intermittent exposure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号