首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1455篇
  免费   107篇
  2024年   3篇
  2023年   14篇
  2022年   38篇
  2021年   67篇
  2020年   32篇
  2019年   44篇
  2018年   58篇
  2017年   45篇
  2016年   60篇
  2015年   92篇
  2014年   85篇
  2013年   100篇
  2012年   143篇
  2011年   131篇
  2010年   61篇
  2009年   71篇
  2008年   80篇
  2007年   76篇
  2006年   62篇
  2005年   70篇
  2004年   65篇
  2003年   33篇
  2002年   41篇
  2001年   12篇
  2000年   5篇
  1999年   9篇
  1998年   5篇
  1997年   5篇
  1996年   9篇
  1995年   4篇
  1994年   9篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1984年   1篇
  1983年   3篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1977年   1篇
  1971年   2篇
  1969年   1篇
  1968年   2篇
  1967年   1篇
  1966年   1篇
排序方式: 共有1562条查询结果,搜索用时 31 毫秒
871.
Caveolae are identifiable plasma membrane invaginations. The main structural proteins of caveolae are the caveolins. There are three caveolins expressed in mammals, designated Cav-1, Cav-2, and Cav-3. It has been postulated that Cav-1 acts as a scaffold protein for signaling proteins; these include ion channels, enzymes, and other ligand receptors like membrane-associated estrogen receptor (ER) or ERβ. Caveolae-associated membrane proteins are involved in regulating some of the rapid estrogenic effects of 17β-estradiol. One important system related to the activity of ER and caveolae is the renin-angiotensin system. Angiotensin II (ANG II) has numerous actions in vascular smooth muscle, including modulation of vasomotor tone, cell growth, apoptosis, phosphatidylinositol 3-kinase (PI3K)/Akt activation, and others. Many proteins associated with caveolae are in close relation with the scaffolding domain of Cav-1 (82–101 amino acid residues). It has been proposed that this peptide may acts as a kinase inhibitor. Therefore, to explore the ability of Cav-1 scaffolding peptide (CSP-1) to regulate ANG II function and analyze the relationship between ER and ANG II type 1 and 2 (AT1 and AT2) receptors, we decided to study the effects of CSP-1 on ANG II-induced intracellular Ca2+ kinetics and the effect of 17β-estradiol on this modulation using human smooth muscle cells in culture, intracellular Ca2+ concentration measurements, immuno- and double-immunocytochemistry confocal analysis of receptor expression, immunoblot analysis, and immunocoprecipitation assays to demonstrate coexpression. We hypothesized that CSP-1 inhibits ANG II-mediated increases in intracellular Ca2+ concentrations by interfering with intracellular signaling including the PI3K/Akt pathway. We also hypothesize that AT2 receptors associate with Cav-1. Our results show that there is a close association of AT1, AT2, and ER with Cav-1 in human arterial smooth muscle cells in culture. CSP-1 inhibits ANG II-induced intracellular signaling. estrogen receptors; angiotensin type 1 and 2 receptors; phosphatidylinositol 3-kinase; intracellular signaling; tissue culture; angiotensin receptors  相似文献   
872.
Apolipoprotein A-I (apoA-I) has a key function in the reverse cholesterol transport. However, aggregation of apoA-I single point mutants can lead to hereditary amyloid pathology. Although several studies have tackled the biophysical and structural consequences introduced by these mutations, there is little information addressing the relationship between the evolutionary and structural features that contribute to the amyloid behavior of apoA-I. We combined evolutionary studies, in silico mutagenesis and molecular dynamics (MD) simulations to provide a comprehensive analysis of the conservation and pathogenic role of the aggregation-prone regions (APRs) present in apoA-I. Sequence analysis demonstrated that among the four amyloidogenic regions described for human apoA-I, only two (APR1 and APR4) are evolutionary conserved across different species of Sarcopterygii. Moreover, stability analysis carried out with the FoldX engine showed that APR1 contributes to the marginal stability of apoA-I. Structural properties of full-length apoA-I models suggest that aggregation is avoided by placing APRs into highly packed and rigid portions of its native fold. Compared to silent variants extracted from the gnomAD database, the thermodynamic and pathogenic impact of amyloid mutations showed evidence of a higher destabilizing effect. MD simulations of the amyloid variant G26R evidenced the partial unfolding of the alpha-helix bundle with the concomitant exposure of APR1 to the solvent, suggesting an insight into the early steps involved in its aggregation. Our findings highlight APR1 as a relevant component for apoA-I structural integrity and emphasize a destabilizing effect of amyloid variants that leads to the exposure of this region.  相似文献   
873.
Background: The aetiology and inflammatory profile of combined pulmonary fibrosis and emphysema (CPFE) remain uncertain currently.

Objective: We aimed to examine the levels of inflammatory proteins in lung tissue in a cohort of patients with emphysema, interstitial pulmonary fibrosis (IPF), and CPFE.

Materials and methods: Explanted lungs were obtained from subjects with emphysema, IPF, CPFE, (or normal subjects), and tissue extracts were prepared. Thirty-four inflammatory proteins were measured in each tissue section.

Results: The levels of all 34 proteins were virtually indistinguishable in IPF compared with CPFE tissues, and collectively, the inflammatory profile in the emphysematous tissues were distinct from IPF and CPFE. Moreover, inflammatory protein levels were independent of the severity of the level of diseased tissue.

Conclusions: We find that emphysematous lung tissues have a distinct inflammatory profile compared with either IPF or CPFE. However, the inflammatory profile in CPFE lungs is essentially identical to lungs from patients with IPF. These data suggest that distinct inflammatory processes collectively contribute to the disease processes in patients with emphysema, when compared to IPF and CPFE.  相似文献   

874.
Context: Fiddler crabs are important to the ecology of estuarine systems around the world, however, few studies have incorporated them as bioindicators. Urias estuary represents one of the most urbanized lagoons in the Gulf of California region and received discharges from different sources: shrimp farm, thermoelectric plant, fish processing plants, and untreated domestic and sewage wastes.

Objective: Assess the effects on anthropogenic contamination on female fiddler crabs reproduction, survival and genetic stability.

Methods: Exposition of wild crabs from a less impacted (reference) site to naturally contaminated sediments on under controlled laboratory conditions. Reproductive parameters, levels of DNA damage and mortality rates were measured, together with chemical analyses of sediments.

Results: The most contaminated sediments corresponded to the site where fish processing plants were located and the integrated biomarker response analysis revealed that the most adverse effects were produced by exposure to sediments from this site; these crabs showed higher mortality (67%) and poorer ovarian development than those crabs exposed to sediments from other sites.

Conclusions: Female crabs under pollution stress are able to trade-off reproduction for survival, and surviving animals were able to restore genetic stability possibly by activating DNA repair mechanisms. Multiple biomarker approach discriminates different coastal contamination scenarios.  相似文献   

875.
Cellular senescence is a state of permanent cell cycle arrest activated in response to damaging stimuli. Many hallmarks associated with senescent cells are measured by quantitative real‐time PCR (qPCR). As the selection of stable reference genes for interpretation of qPCR data is often overlooked, we performed a systematic review to understand normalization strategies entailed in experiments involving senescent cells. We found that, in violation of the Minimum Information for publication of qPCR Experiments (MIQE) guidelines, most reports used only one reference gene to normalize qPCR data, and that stability of the reference genes was either not tested or not reported. To identify new and more stable reference genes in senescent fibroblasts, we analyzed the Shapiro–Wilk normality test and the coefficient of variation per gene using in public RNAseq datasets. We then compared the new reference gene candidates with commonly used ones by using both RNAseq and qPCR data. Finally, we defined the best reference genes to be used universally or in a strain‐dependent manner. This study intends to raise awareness of the instability of classical reference genes in senescent cells and to serve as a first attempt to define guidelines for the selection of more reliable normalization methods.  相似文献   
876.
The aim of this study was to evaluate the response of orange fruit (Citrus sinensis var. Valencia Late) to freezing stress in planta, both immediately after the natural event and after a week, in order to understand the biochemical and molecular basis of the changes that later derive in internal and external damage symptoms. Using two‐dimensional differential gel electrophoresis to analyze exposed and non‐exposed fruit, 27 differential protein spots were detected in juice sacs and flavedo, among all comparisons made. Also, primary and secondary metabolites relative contents were analyzed in both tissues by gas chromatography‐mass spectrometry and liquid chromatography‐mass spectrometry, respectively. Proteins and compounds involved in regulatory functions, iron metabolism, oxidative damage and carbohydrate metabolism were the most affected. Interestingly, three glycolytic enzymes were induced by cold, and there was an increase in fermentation products (volatiles); all of that suggests that more energy generation might be required from glycolysis to counter the cold stress. Moreover, a notable increase in sugar levels was observed after frost, but it was not at the expense of organic acids utilization. Consequently, these results suggest a probable redistribution of photoassimilates in the frost‐exposed plants, tending to restore the homeostasis altered by that severe type of stress. Isosinensetin was the most cold‐sensitive secondary metabolite because it could not be detected at all after the frost, constituting a possible tool to early diagnose freezing damage.  相似文献   
877.
878.
Bacterial wilt, caused by members of the heterogenous Ralstonia solanacearum species complex, is an economically important vascular disease affecting many crops. Human activity has widely disseminated R. solanacearum strains, increasing their global agricultural impact. However, tropical highland race 3 biovar 2 (R3bv2) strains do not cause disease in tropical lowlands, even though they are virulent at warm temperatures. We tested the hypothesis that differences in temperature adaptation and competitive fitness explain the uneven geographic distribution of R. solanacearum strains. Using three phylogenetically and ecologically distinct strains, we measured competitive fitness at two temperatures following paired-strain inoculations of their shared host, tomato. Lowland tropical strain GMI1000 was only weakly virulent on tomato under temperate conditions (24°C for day and 19°C for night [24/19°C]), but highland tropical R3bv2 strain UW551 and U.S. warm temperate strain K60 were highly virulent at both 24/19°C and 28°C. Strain K60 was significantly more competitive than both GMI1000 and UW551 in tomato rhizospheres and stems at 28°C, and GMI1000 also outcompeted UW551 at 28°C. The results were reversed at cooler temperatures, at which highland strain UW551 generally outcompeted GMI1000 and K60 in planta. The superior competitive index of UW551 at 24/19°C suggests that adaptation to cool temperatures could explain why only R3bv2 strains threaten highland agriculture. Strains K60 and GMI1000 each produced different bacteriocins that inhibited growth of UW551 in culture. Such interstrain inhibition could explain why R3bv2 strains do not cause disease in tropical lowlands.  相似文献   
879.
Metal-imbalance has been reported as a contributor factor for the degeneration of dopaminergic neurons in Parkinson Disease (PD). Specifically, iron (Fe)-overload and copper (Cu) mis-compartmentalization have been reported to be involved in the injury of dopaminergic neurons in this pathology. The aim of this work was to characterize the mechanisms of membrane repair by studying lipid acylation and deacylation reactions and their role in oxidative injury in N27 dopaminergic neurons exposed to Fe-overload and Cu-supplementation. N27 dopaminergic neurons incubated with Fe (1mM) for 24 hs displayed increased levels of reactive oxygen species (ROS), lipid peroxidation and elevated plasma membrane permeability. Cu-supplemented neurons (10, 50 μM) showed no evidence of oxidative stress markers. A different lipid acylation profile was observed in N27 neurons pre-labeled with [3H] arachidonic acid (AA) or [3H] oleic acid (OA). In Fe-exposed neurons, AA uptake was increased in triacylglycerols (TAG) whereas its incorporation into the phospholipid (PL) fraction was diminished. TAG content was 40% higher in Fe-exposed neurons than in controls. This increase was accompanied by the appearance of Nile red positive lipid bodies. Contrariwise, OA incorporation increased in the PL fractions and showed no changes in TAG. Lipid acylation profile in Cu-supplemented neurons showed AA accumulation into phosphatidylserine and no changes in TAG. The inhibition of deacylation/acylation reactions prompted an increase in oxidative stress markers and mitochondrial dysfunction in Fe-overloaded neurons. These findings provide evidence about the participation of lipid acylation mechanisms against Fe-induced oxidative injury and postulate that dopaminergic neurons cleverly preserve AA in TAG in response to oxidative stress.  相似文献   
880.
IntroductionPreeclampsia is a maternal hypertensive disorder with uncertain etiology and a leading cause of maternal and fetal mortality worldwide, causing nearly 40% of premature births delivered before 35 weeks of gestation. The first stage of preeclampsia is characterized by reduction of utero-placental blood flow which is reflected in high blood pressure and proteinuria during the second half of pregnancy. In human placenta androgens derived from the maternal and fetal adrenal glands are converted into estrogens by the enzymatic action of placental aromatase. This implies that alterations in placental steroidogenesis and, subsequently, in the functionality or bioavailability of placental aromatase may be mechanistically involved in the pathophysiology of PE.MethodsSerum samples were collected at 32–36 weeks of gestation and placenta biopsies were collected at time of delivery from PE patients (n = 16) and pregnant controls (n = 32). The effect of oxygen tension on placental cells was assessed by incubation JEG–3 cells under 1% and 8% O2 for different time periods, Timed-mated, pregnant New Zealand white rabbits (n = 6) were used to establish an in vivo model of placental ischemia (achieved by ligature of uteroplacental vessels). Aromatase content and estrogens and androgens concentrations were measured.ResultsThe protein and mRNA content of placental aromatase significantly diminished in placentae obtained from preeclamptic patients compared to controls. Similarly, the circulating concentrations of 17-β-estradiol/testosterone and estrone/androstenedione were reduced in preeclamptic patients vs. controls. These data are consistent with a concomitant decrease in aromatase activity. Aromatase content was reduced in response to low oxygen tension in the choriocarcinoma JEG–3 cell line and in rabbit placentae in response to partial ligation of uterine spiral arteries, suggesting that reduced placental aromatase activity in preeclamptic patients may be associated with chronic placental ischemia and hypoxia later in gestation.ConclusionsPlacental aromatase expression and functionality are diminished in pregnancies complicated by preeclampsia in comparison with healthy pregnant controls.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号