首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   8篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   6篇
  2019年   6篇
  2018年   8篇
  2017年   4篇
  2016年   3篇
  2015年   2篇
  2014年   6篇
  2013年   7篇
  2012年   5篇
  2011年   6篇
  2010年   3篇
  2009年   2篇
  2007年   5篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  1999年   1篇
  1998年   2篇
  1991年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有80条查询结果,搜索用时 265 毫秒
31.
The filamentous fungus Paecylomices variotii was able to produce high levels of cell extract and extracellular invertases when grown under submerged fermentation (SbmF) and solid-state fermentation, using agroindustrial products or residues as substrates, mainly soy bran and wheat bran, at 40°C for 72 h and 96 h, respectively. Addition of glucose or fructose (≥1%; w/v) in SbmF inhibited enzyme production, while the addition of 1% (w/v) peptone as organic nitrogen source enhanced the production by 3.7-fold. However, 1% (w/v) (NH4)2HPO4 inhibited enzyme production around 80%. The extracellular form was purified until electrophoretic homogeneity (10.5-fold with 33% recovery) by DEAE-Fractogel and Sephacryl S-200 chromatography. The enzyme is a monomer with molecular mass of 102 kDa estimated by SDS–PAGE with carbohydrate content of 53.6%. Optima of temperature and pH for both, extracellular and cell extract invertases, were 60°C and 4.0–4.5, respectively. Both invertases were stable for 1 h at 60°C with half-lives of 10 min at 70°C. Mg2+, Ba2+ and Mn2+ activated both extracellular and cell extract invertases from P. variotii. The kinetic parameters Km and Vmax for the purified extracellular enzyme corresponded to 2.5 mM and 481 U/mg prot−1, respectively.  相似文献   
32.
Many hypotheses have been proposed to explain high species diversity in Amazonia, but few generalizations have emerged. In part, this has arisen from the scarcity of rigorous tests for mechanisms promoting speciation, and from major uncertainties about palaeogeographic events and their spatial and temporal associations with diversification. Here, we investigate the environmental history of Amazonia using a phylogenetic and biogeographic analysis of trumpeters (Aves: Psophia), which are represented by species in each of the vertebrate areas of endemism. Their relationships reveal an unforeseen 'complete' time-slice of Amazonian diversification over the past 3.0 Myr. We employ this temporally calibrated phylogeny to test competing palaeogeographic hypotheses. Our results are consistent with the establishment of the current Amazonian drainage system at approximately 3.0-2.0 Ma and predict the temporal pattern of major river formation over Plio-Pleistocene times. We propose a palaeobiogeographic model for the last 3.0 Myr of Amazonian history that has implications for understanding patterns of endemism, the temporal history of Amazonian diversification and mechanisms promoting speciation. The history of Psophia, in combination with new geological evidence, provides the strongest direct evidence supporting a role for river dynamics in Amazonian diversification, and the absence of such a role for glacial climate cycles and refugia.  相似文献   
33.
Many understory birds and other groups form genetically differentiated subspecies or closely related species on opposite sides of major rivers of Amazonia, but are proposed to come into geographic contact in headwater regions where narrower river widths may present less of a dispersal barrier. Whether such forms hybridize in headwater regions is generally unknown, but has important implications to our understanding of the role of rivers as drivers of speciation. We used a dataset of several thousand single nucleotide polymorphisms to show that seven taxon pairs that differentiate across a major Amazonian river come into geographic contact and hybridize in headwater regions. All taxon pairs possessed hybrids with low numbers of loci in which alleles were inherited from both parental species, suggesting they are backcrossed with parentals, and indicating gene flow between parental populations. Ongoing gene flow challenges rivers as the sole cause of in situ speciation, but is compatible with the view that the wide river courses in the heart of Amazonia may have driven interfluvial divergence during episodes of wet forest retraction away from headwater regions. Taxa as old as 4 Ma in our Amazonian dataset continue to hybridize at contact zones, suggesting reproductive isolation evolves at a slow pace.  相似文献   
34.
35.
36.
37.
Potential disparities between rates of surface and below-ground respiration were examined in seven mangrove forests of different topographic height in Timor Leste. Differences in surface respiration between air-exposed and inundated soils were inconsistent, but surface respiration rates increased, with tidal elevation. Net primary production (NPP) on air-exposed soils declined with increasing forest cover indicating light limitation beneath the canopy. NPP and respiration were linearly related under both air-exposed and inundated conditions. Rates of DIC release from the soil surface varied among forests, correlating only with soil carbon (TOC) and nitrogen (TN) and their stoichiometric ratios. Sulfate reduction was detected to maximum depth of unconsolidated soil, correlating only with TOC and TN content at discrete depth intervals. DIC concentrations in drainage channels were equivalent to porewater concentrations. The rate of carbon mineralized by sulfate reducers (SRC) was equivalent to rates of total carbon oxidation (TCO) measured at the soil surface in forests at tidal heights?≤0.5?m above mean sea-level (MSL). However, SRC was increasingly greater than TCO in forests residing from 1.0 up to 2.5?m above MSL. Most carbon mineralized in subsurface deposits appears to seep out of the forest via groundwater. Rates of surface respiration therefore underestimate rates of total benthic carbon mineralization in forests at topographic heights?≥0.5?m above MSL, suggesting that the amount of respiratory carbon exported from many mangrove forests has also been underestimated.  相似文献   
38.
Tropical forests harbor extremely high levels of biological diversity and are quickly disappearing. Despite the increasingly recognized high rate of habitat loss, it is expected that new species will be discovered as more effort is put to document tropical biodiversity. Exploring under‐studied regions is particularly urgent if we consider the rapid changes in habitat due to anthropogenic activities. Madagascar is known for its extraordinary biological diversity and endemicity. It is also threatened by habitat loss and fragmentation. It holds more than 100 endemic primate species (lemurs). Among these, Microcebus (mouse lemurs) is one of the more diverse genera. We sampled mouse lemurs from several sites across northern Madagascar, including forests never sampled before. We obtained morphological data from 99 Microcebus individuals; we extracted DNA from tissue samples of 42 individuals and amplified two mitochondrial loci (cytb and cox2) commonly used for species identification. Our findings update the distribution of three species (Microcebus tavaratra, Microcebus arnholdi, and Microcebus mamiratra), including a major increase in the distribution area of M. arnholdi. We also report the discovery of a new Microcebus lineage genetically related to M. arnholdi. Several complementary approaches suggest that the newly identified Microcebus lineage might correspond to a new putative species, to be confirmed or rejected with additional data. In addition, morphological analyses showed (a) clear phenotypic differences between M. tavaratra and M. arnholdi, but no clear differences between the new Microcebus lineage and the sister species M. arnholdi; and (b) a significant correlation between climatic variables and morphology, suggesting a possible relationship between species identity, morphology, and environment. By integrating morphological, climatic, genetic, and spatial data of two northern Microcebus species, we show that the spatial distribution of forest‐dwelling species may be used as a proxy to reconstruct the past spatial changes in forest cover and vegetation type.  相似文献   
39.
The memorization and production of song in songbirds share important parallels with the process of speech acquisition in humans. In songbirds, these processes are dependent on a group of specialized telencephalic nuclei known as the song system: HVC (used as a proper name), RA (robust nucleus of arcopallium), LMAN (lateral magnocellular nucleus of the nidopallium) and striatal Area X. A recent study suggested that the arcopallium of the Sayornis phoebe, a non vocal learner suboscine species, contains a nucleus with some properties similar to those of songbird RA, suggesting that the song system may have been present in the last common ancestor of these groups. Here we report morphological and gene expression evidence that a region with some properties similar to RA is present in another suboscine, the Amazonian endemic Willisornis poecilinotus. Specifically, a discrete domain with a distinct Nissl staining pattern and that expresses the RA marker RGS4 was found in the arcopallium where the oscine RA is localized. Our findings, combined with the previous report on the S. phoebe, suggest that an arcopallial region with some RA-like properties was present in the ancestor of both Suboscines infraorders Tyranni and Furnarii, and is possibly an ancestral feature of Passeriformes.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号