首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1843篇
  免费   110篇
  国内免费   4篇
  1957篇
  2024年   6篇
  2023年   15篇
  2022年   57篇
  2021年   79篇
  2020年   36篇
  2019年   47篇
  2018年   63篇
  2017年   57篇
  2016年   72篇
  2015年   100篇
  2014年   116篇
  2013年   131篇
  2012年   169篇
  2011年   165篇
  2010年   87篇
  2009年   67篇
  2008年   97篇
  2007年   68篇
  2006年   72篇
  2005年   72篇
  2004年   55篇
  2003年   49篇
  2002年   35篇
  2001年   15篇
  2000年   17篇
  1999年   13篇
  1998年   8篇
  1997年   7篇
  1996年   7篇
  1995年   6篇
  1994年   6篇
  1993年   8篇
  1992年   11篇
  1991年   8篇
  1990年   12篇
  1989年   5篇
  1986年   5篇
  1983年   5篇
  1982年   8篇
  1981年   5篇
  1980年   6篇
  1977年   8篇
  1975年   8篇
  1974年   4篇
  1973年   7篇
  1972年   7篇
  1971年   7篇
  1970年   5篇
  1969年   8篇
  1965年   4篇
排序方式: 共有1957条查询结果,搜索用时 0 毫秒
31.
Enzyme-based catalysis has become one of the most important disciplines in organic synthesis and plays a noteworthy role in the establishment of many chemical industries, e.g. fine chemicals, food or energy, textiles, agricultural, cosmeceutical, medicinal and pharmaceutical industries. However, pristine enzymes fail to demonstrate requisite functionalities for an industrial setting where extremely specific and stable catalysts are required. Immobilization enhances the catalytic stability and activity of enzymes and trims the overall cost burden of the enzyme. Therefore, it widely endeavours for proficient, sustainable, and environmentally responsive catalytic processes. Amongst several immobilization strategies, e.g. (1) supports-assisted, i.e. physical or covalent coupling and (2) supports-free techniques, i.e. cross-linked enzyme crystals (CLECs) or aggregates are the most promising ones and widely pursued for enzyme immobilization purposes. This perspective review focuses on up-to-date developments in the area of enzyme immobilization and presents their potentialities to upgrade and/or modify enzyme properties. Both types of immobilization strategies, i.e. supports-assisted and supports-free techniques are discussed with particular reference to CLECs or aggregates and protein-coated microcrystals. Also, several useful traits achieved after immobilization are also discussed in the second half of the review.  相似文献   
32.
33.

Background

Foot and mouth disease is an economically important disease of cloven-hoofed animals including cattle, sheep and pigs. It is caused by a picornavirus, foot-and-mouth disease virus (FMDV), which has a positive sense RNA genome which, when introduced into cells, can initiate virus replication.

Principal Findings

A system has been developed to rescue infectious FMDV from RNA preparations generated from clinical samples obtained under experimental conditions and then applied to samples collected in the “field”. Clinical samples from suspect cases of foot-and-mouth disease (FMD) were obtained from within Pakistan and Afghanistan. The samples were treated to preserve the RNA and then transported to National Veterinary Institute, Lindholm, Denmark. Following RNA extraction, FMDV RNA was quantified by real-time RT-PCR and samples containing significant levels of FMDV RNA were introduced into susceptible cells using electroporation. Progeny viruses were amplified in primary bovine thyroid cells and characterized using antigen ELISA and also by RT-PCR plus sequencing. FMD viruses of three different serotypes and multiple lineages have been successfully rescued from the RNA samples. Two of the rescued viruses (of serotype O and Asia 1) were inoculated into bull calves under high containment conditions. Acute clinical disease was observed in each case which spread rapidly from the inoculated calves to in-contact animals. Thus the rescued viruses were highly pathogenic. The availability of the rescued viruses enabled serotyping by antigen ELISA and facilitated genome sequencing.

Conclusions

The procedure described here should improve the characterization of FMDVs circulating in countries where the disease is endemic and thus enhance disease control globally.  相似文献   
34.
Production of reactive oxygen species represents a fundamental innate defense against microbes in a diversity of host organisms. Oxidative stress, amongst others, converts peptidyl and free methionine to a mixture of methionine-S- (Met-S-SO) and methionine-R-sulfoxides (Met-R-SO). To cope with such oxidative damage, methionine sulfoxide reductases MsrA and MsrB are known to reduce MetSOs, the former being specific for the S-form and the latter being specific for the R-form. However, at present the role of methionine sulfoxide reductases in the pathogenesis of intracellular bacterial pathogens has not been fully detailed. Here we show that deletion of msrA in the facultative intracellular pathogen Salmonella (S.) enterica serovar Typhimurium increased susceptibility to exogenous H(2)O(2), and reduced bacterial replication inside activated macrophages, and in mice. In contrast, a ΔmsrB mutant showed the wild type phenotype. Recombinant MsrA was active against free and peptidyl Met-S-SO, whereas recombinant MsrB was only weakly active and specific for peptidyl Met-R-SO. This raised the question of whether an additional Met-R-SO reductase could play a role in the oxidative stress response of S. Typhimurium. MsrC is a methionine sulfoxide reductase previously shown to be specific for free Met-R-SO in Escherichia (E.) coli. We tested a ΔmsrC single mutant and a ΔmsrBΔmsrC double mutant under various stress conditions, and found that MsrC is essential for survival of S. Typhimurium following exposure to H(2)O(2,) as well as for growth in macrophages, and in mice. Hence, this study demonstrates that all three methionine sulfoxide reductases, MsrA, MsrB and MsrC, facilitate growth of a canonical intracellular pathogen during infection. Interestingly MsrC is specific for the repair of free methionine sulfoxide, pointing to an important role of this pathway in the oxidative stress response of Salmonella Typhimurium.  相似文献   
35.
Robust circadian oscillations of the proteins PERIOD (PER) and TIMELESS (TIM) are hallmarks of a functional clock in the fruit fly Drosophila melanogaster. Early morning phosphorylation of PER by the kinase Doubletime (DBT) and subsequent PER turnover is an essential step in the functioning of the Drosophila circadian clock. Here using time-lapse fluorescence microscopy we study PER stability in the presence of DBT and its short, long, arrhythmic, and inactive mutants in S2 cells. We observe robust PER degradation in a DBT allele-specific manner. With the exception of doubletime-short (DBT(S)), all mutants produce differential PER degradation profiles that show direct correspondence with their respective Drosophila behavioral phenotypes. The kinetics of PER degradation with DBT(S) in cell culture resembles that with wild-type DBT and posits that, in flies DBT(S) likely does not modulate the clock by simply affecting PER degradation kinetics. For all the other tested DBT alleles, the study provides a simple model in which the changes in Drosophila behavioral rhythms can be explained solely by changes in the rate of PER degradation.  相似文献   
36.
37.
The ER‐bound kinase/endoribonuclease (RNase), inositol‐requiring enzyme‐1 (IRE1), regulates the phylogenetically most conserved arm of the unfolded protein response (UPR). However, the complex biology and pathology regulated by mammalian IRE1 cannot be fully explained by IRE1’s one known, specific RNA target, X box‐binding protein‐1 (XBP1) or the RNA substrates of IRE1‐dependent RNA degradation (RIDD) activity. Investigating other specific substrates of IRE1 kinase and RNase activities may illuminate how it performs these diverse functions in mammalian cells. We report that macrophage IRE1 plays an unprecedented role in regulating phosphatidylinositide‐derived signaling lipid metabolites and has profound impact on the downstream signaling mediated by the mammalian target of rapamycin (mTOR). This cross‐talk between UPR and mTOR pathways occurs through the unconventional maturation of microRNA (miR) 2137 by IRE1’s RNase activity. Furthermore, phosphatidylinositol (3,4,5) phosphate (PI(3,4,5)P3) 5‐phosphatase‐2 (INPPL1) is a direct target of miR‐2137, which controls PI(3,4,5)P3 levels in macrophages. The modulation of cellular PI(3,4,5)P3/PIP2 ratio and anabolic mTOR signaling by the IRE1‐induced miR‐2137 demonstrates how the ER can provide a critical input into cell growth decisions.  相似文献   
38.
To exploit the B-lymphocyte antigen-CD20 binding capacity of the Ibritumomab tiuxetan (IBTN) monoclonal antibody (mAb) for imaging, the over-expression of B cells in non-Hodgkin's lymphoma (NHL) (a myeloproliferative disorder of the lymphatic system) was investigated. In the current investigation, we present the labeling of the IBTN with technetium-99m ((99m)Tc) through [(99m)Tc(CO)(3)](+) precursor for radioimmunoimaging (RII) of the tumor prior to its treatment with (90)Y labeled IBTN. Labeled IBTN was radiobiologically characterized in terms of radiochemical purity, in vitro stability in human plasma, immunoreactivity, binding with Raji and Ramos cells and biodistribution in a female nude mouse (FNM) model. It was observed that the reduced IBTN (rIBTN) showed more promising radiobiologic characteristics than the nonreduced IBTN. Significantly higher transchelation was seen in excess cysteine compared with histidine. The radioconjugate showed higher saturated binding affinity with CD20 antigen. Significantly higher target (tumor) to background ratios were observed 1 h post-injection (p.i.). Based on radiochemical purity, in vitro stability, immunoreactivity, binding and biodistrubtion in the FNM model, we recommend the radiolabeling of the rIBTN using tricarbonyl technique as a potential RII agent.  相似文献   
39.
Human parechoviruses are known to cause asymptomatic to severe clinical illness predominantly respiratory and gastroenetric infections. Despite their global prevalence, epidemiological studies have not been performed in Pakistan. In this study, we retrospectively analyzed 110 fecal specimen and found 26 (24%) positive for viral RNA with HPeV-10 (n = 3, 23%), HPeV-13 (n = 4, 31%) and HPeV-15 (n = 6, 46%) genotypes. Clinical features of patients with different HPeV genotypes were compared. All HPeV positive children were aged ≤4 years (mean 13.92 months). The male-to-female ratio was 1: 1.17 (46.2 vs 53.8%) with significant association (p = .031) to HPeV infectivity. HPeV-10 and -13 were found during summer while HPeV-15 was only detected during late winter season. Disease symptoms were more severe in children infected with HPeV-10 and -13 as compared to HPeV-15. Fever and vomiting were observed in 100% cases of HPeV-10 and -13 while only 17% patients of HPeV-15 had these complaints. Phylogenetic analyses showed that HPeV-10, -13 and -15 strains found in this study have 9–13%, 16.8% and 21.8% nucleotide divergence respectively from the prototype strains and were clustered to distinct genetic lineages. This is the first report of HPeV-15 infection in humans although first identified in rhesus macaques. The arginine-glycine-aspartic acid (RGD) motif present at the C-terminal of VP1 responsible for the viral attachment to cellular integrins was not found in all of these strains. In conclusion, these findings enhance our knowledge related to the epidemiology and genetic diversity of the HPeV in Pakistan and support the need for continued laboratory based surveillance programs especially in infants and neonatal clinical settings. Further, the parechovirus pathogenesis, cross-species transmission and disease reservoirs must be ascertained to adopt better prevention measures.  相似文献   
40.
Background & objectivesRosuvastatin calcium (RC) is a potent and competitive synthetic inhibitor of HMG-CoA reductase used for the treatment of dyslipidemia. Guggulipid obtained from Commiphora mukul is used in the treatment of a wide variety of diseases such as atherosclerosis, hypercholesterolemia, rheumatism, and obesity. The present study evaluates the pharmacokinetic and pharmacodynamic interactions between RC and the standardized guggulipid extract in rats.Materials and methodsThe guggulipid extract was standardized for the presence of guggulsterones. The pharmacokinetic interaction was determined after a single dose administration of RC alone or in combination with the guggulipid extract or after multiple-dose administration of RC alone or RC along with the guggulipid extract for 14 days. To determine the pharmacodynamic interaction, RC and guggulipid extract were administered to hyperlipidemic rats for 14 days. The level of significance was determined using unpaired student’s t-test, one way ANOVA, the post-ANOVA Tukey test.ResultsStandardization of guggulipid extract showed it contains 7.5%w/w of guggulsterones. Guggulipid extract increased the bioavailability of RC in both single-dose and multiple-dose studies. Guggulipid extract reduced the rate of absorption (Ka) of RC but showed an increase in maximum serum concentration (Cmax). An in-vitro study using isolated rat intestine revealed that guggulipid extract decreased the rate of absorption of RC in the intestinal lumen. The hypolipidemic activity of RC was augmented by the guggulipid extract in hyperlipidemic rats.Interpretation & conclusionTherefore it is concluded that guggulipid extract increases the bioavailability of RC by delaying its Ka and augments its hypolipidemic action. However, it is recommended that a combination of RC with guggulipid extract should be used only after an adverse effect(s) of this combination are determined.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号