全文获取类型
收费全文 | 220篇 |
免费 | 11篇 |
专业分类
231篇 |
出版年
2022年 | 1篇 |
2021年 | 2篇 |
2019年 | 3篇 |
2018年 | 3篇 |
2017年 | 2篇 |
2016年 | 8篇 |
2015年 | 5篇 |
2014年 | 14篇 |
2013年 | 10篇 |
2012年 | 19篇 |
2011年 | 17篇 |
2010年 | 10篇 |
2009年 | 6篇 |
2008年 | 13篇 |
2007年 | 13篇 |
2006年 | 10篇 |
2005年 | 10篇 |
2004年 | 8篇 |
2003年 | 6篇 |
2002年 | 2篇 |
2001年 | 5篇 |
2000年 | 6篇 |
1999年 | 7篇 |
1998年 | 5篇 |
1997年 | 2篇 |
1996年 | 1篇 |
1995年 | 2篇 |
1994年 | 2篇 |
1991年 | 2篇 |
1990年 | 2篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1986年 | 2篇 |
1985年 | 1篇 |
1984年 | 2篇 |
1983年 | 3篇 |
1982年 | 1篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1976年 | 2篇 |
1975年 | 1篇 |
1974年 | 2篇 |
1973年 | 2篇 |
1971年 | 1篇 |
1969年 | 5篇 |
1968年 | 1篇 |
1966年 | 2篇 |
1965年 | 6篇 |
排序方式: 共有231条查询结果,搜索用时 15 毫秒
61.
The aberrant spermatogenesis of the haploid insect Haplothrips simplex (Thysanoptera) is described. The process, which occurs in the pupal instars, is characterized by two mitotic divisions, the second of which gives rise to two different-sized spermatids: the larger spermatids have a nucleus with diffuse chromatin and proceed into spermiogenesis, while the small spermatids have pycnotic nuclei and degenerate. Both types of spermatids contain two centrioles parallely rather than orthogonally oriented. The occurrence of two centrioles supports a close relationship between Thysanoptera and Phthyraptera. Before the beginning of spermiogenesis, however, the functional spermatids show the unusual presence of a third parallel centriole which is formed by the duplication of one of the two pre-existing centrioles. 相似文献
62.
63.
Role of hyperhomocysteinemia in aortic disease. 总被引:2,自引:0,他引:2
B Giusti R Marcucci I Lapini I Sestini M Lenti M Yacoub G Pepe 《Cellular and molecular biology, including cyto-enzymology》2004,50(8):945-952
A growing body of evidence has shown a strong association between elevated plasma homocysteine (Hcy) levels with vascular disease and thrombotic complications. Data available in literature also suggest a role of hyperhomocysteinemia in abdominal and thoracic aortic diseases. In particular, Hcy was investigated in patients with Marfan syndrome and it was demonstrated that Hcy levels were associated with the risk of severe cardiovascular manifestations or dissection. Hcy was significantly higher also in patients with abdominal aortic aneurysms and was associated with the size of aneurysms. It remains to be elucidated if this association is causal or simply an effect of the disease. A number of mechanisms may be evoked to explain these findings. Studies in animal models demonstrated that hyperhomocysteinemia could induce marked remodelling of the extracellular matrix of the arterial wall by inducing elastolysis through the activation of metalloproteinases. In addition, Hcy may directly affect fibrillin-1 or collagen by interfering with intra- and/or inter-molecular disulfide bonds through disulfide exchange, or binding to free sulphydryl groups. Further studies are needed to confirm the role of Hcy in aortic disease and the usefulness of including Hcy determination in the clinical evaluation of these patients. 相似文献
64.
65.
66.
67.
Artificial enzymes hold the potential to catalyze valuable reactions not observed in nature. One approach to build artificial enzymes introduces mutations into an existing protein scaffold to enable a new catalytic activity. This process commonly results in a simultaneous reduction of protein stability as an undesired side effect. While protein stability can be increased through techniques like directed evolution, care needs to be taken that added stability, conversely, does not sacrifice the desired activity of the enzyme. Ideally, enzymatic activity and protein stability are engineered simultaneously to ensure that stable enzymes with the desired catalytic properties are isolated. Here, we present the use of the in vitro selection technique mRNA display to isolate enzymes with improved stability and activity in a single step. Starting with a library of artificial RNA ligase enzymes that were previously isolated at ambient temperature and were therefore mostly mesophilic, we selected for thermostable active enzyme variants by performing the selection step at 65°C. The most efficient enzyme, ligase 10C, was not only active at 65°C, but was also an order of magnitude more active at room temperature compared to related enzymes previously isolated at ambient temperature. Concurrently, the melting temperature of ligase 10C increased by 35 degrees compared to these related enzymes. While low stability and solubility of the previously selected enzymes prevented a structural characterization, the improved properties of the heat-stable ligase 10C finally allowed us to solve the three-dimensional structure by NMR. This artificial enzyme adopted an entirely novel fold that has not been seen in nature, which was published elsewhere. These results highlight the versatility of the in vitro selection technique mRNA display as a powerful method for the isolation of thermostable novel enzymes. 相似文献
68.
Calabrese V Cornelius C Dinkova-Kostova AT Iavicoli I Di Paola R Koverech A Cuzzocrea S Rizzarelli E Calabrese EJ 《Biochimica et biophysica acta》2012,1822(5):753-783
Modulation of endogenous cellular defense mechanisms represents an innovative approach to therapeutic intervention in diseases causing chronic tissue damage, such as in neurodegeneration. This paper introduces the emerging role of exogenous molecules in hormetic-based neuroprotection and the mitochondrial redox signaling concept of hormesis and its applications to the field of neuroprotection and longevity. Maintenance of optimal long-term health conditions is accomplished by a complex network of longevity assurance processes that are controlled by vitagenes, a group of genes involved in preserving cellular homeostasis during stressful conditions. Vitagenes encode for heat shock proteins (Hsp) Hsp32, Hsp70, the thioredoxin and the sirtuin protein systems. Dietary antioxidants, such as polyphenols and L-carnitine/acetyl-L-carnitine, have recently been demonstrated to be neuroprotective through the activation of hormetic pathways, including vitagenes. Hormesis provides the central underpinning of neuroprotective responses, providing a framework for explaining the common quantitative features of their dose response relationships, their mechanistic foundations, their relationship to the concept of biological plasticity as well as providing a key insight for improving the accuracy of the therapeutic dose of pharmaceutical agents within the highly heterogeneous human population. This paper describes in mechanistic detail how hormetic dose responses are mediated for endogenous cellular defense pathways including sirtuin, Nrfs and related pathways that integrate adaptive stress responses in the prevention of neurodegenerative diseases. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease. 相似文献
69.
Rechichi A Cristallini C Vitale U Ciardelli G Barbani N Vozzi G Giusti P 《Journal of cellular and molecular medicine》2007,11(6):1367-1376
Molecular imprinting is a technique for the synthesis of polymers capable to bind target molecules selectively. The imprinting of large proteins, such as cell adhesion proteins or cell receptors, opens the way to important and innovative biomedical applications. However, such molecules can incur into important conformational changes during the preparation of the imprinted polymer impairing the specificity of the recognition cavities. The "epitope approach" can overcome this limit by adopting, as template, a short peptide sequence representative of an accessible fragment of a larger protein. The resulting imprinted polymer can recognize both the template and the whole molecule thanks to the specific cavities for the epitope. In this work two molecularly imprinted polymer formulations (a macroporous monolith and nanospheres) were obtained using the protected peptide Z-Thr-Ala-Ala-OMe, as template, and Z-Thr-Ile-Leu-OMe, as analogue for the selectivity evaluation, methacrylic acid, as functional monomer, and trimethylolpropane trimethacrylate and pentaerythritol triacrylate (PETRA), as cross-linkers. Polymers were synthesized by precipitation polymerization and characterized by standard techniques. Polymerization and rebinding solutions were analyzed by high performance liquid chromatography. The highly cross-linked polymers retained about 70% of the total template amount, against (20% for the less cross-linked ones). The extracted template amount and the rebinding capacity decreased with the cross-linking degree, while the selectivity showed the opposite behaviour. The PETRA cross-linked polymers showed the best recognition (MIP 2-, alpha=1.71) and selectivity (MIP 2+, alpha'=5.58) capabilities. The cytotoxicity tests showed normal adhesion and proliferation of fibroblasts cultured in the medium that was put in contact with the imprinted polymers. 相似文献
70.
Ann E. Sizemore Chad Giusti Ari Kahn Jean M. Vettel Richard F. Betzel Danielle S. Bassett 《Journal of computational neuroscience》2018,44(1):115-145
Encoding brain regions and their connections as a network of nodes and edges captures many of the possible paths along which information can be transmitted as humans process and perform complex behaviors. Because cognitive processes involve large, distributed networks of brain areas, principled examinations of multi-node routes within larger connection patterns can offer fundamental insights into the complexities of brain function. Here, we investigate both densely connected groups of nodes that could perform local computations as well as larger patterns of interactions that would allow for parallel processing. Finding such structures necessitates that we move from considering exclusively pairwise interactions to capturing higher order relations, concepts naturally expressed in the language of algebraic topology. These tools can be used to study mesoscale network structures that arise from the arrangement of densely connected substructures called cliques in otherwise sparsely connected brain networks. We detect cliques (all-to-all connected sets of brain regions) in the average structural connectomes of 8 healthy adults scanned in triplicate and discover the presence of more large cliques than expected in null networks constructed via wiring minimization, providing architecture through which brain network can perform rapid, local processing. We then locate topological cavities of different dimensions, around which information may flow in either diverging or converging patterns. These cavities exist consistently across subjects, differ from those observed in null model networks, and – importantly – link regions of early and late evolutionary origin in long loops, underscoring their unique role in controlling brain function. These results offer a first demonstration that techniques from algebraic topology offer a novel perspective on structural connectomics, highlighting loop-like paths as crucial features in the human brain’s structural architecture. 相似文献