首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   1篇
  23篇
  2021年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2009年   4篇
  2008年   1篇
  2007年   2篇
  2003年   1篇
  2002年   2篇
  2000年   2篇
  1999年   1篇
  1995年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
21.
Human milk contains prebiotic oligosaccharides, which stimulate the growth of intestinal bifidobacteria and lactobacilli. It is unclear whether the prebiotic capacity of human milk contributes to the larger bile salt pool size and the more efficient fat absorption in infants fed human milk compared with formula. We determined the effect of prebiotic oligosaccharides on bile salt metabolism in rats. Rats were fed a control diet or an isocaloric diet containing a mixture of galactooligosaccharides (GOS), long-chain fructooligosaccharides (lcFOS), and acidified oligosaccharides (AOS) for 3 wk. We determined synthesis rate, pool size, and fractional turnover rate (FTR) of the primary bile salt cholate by using stable isotope dilution methodology. We quantified bile flow and biliary bile salt secretion rates through bile cannulation. Prebiotic intervention resulted in significant changes in fecal and colonic flora: the proportion of lactobacilli increased 344% (P < 0.01) in colon content and 139% (P < 0.01) in feces compared with the control group. The number of bifidobacteria also increased 366% (P < 0.01) in colon content and 282% in feces after the prebiotic treatment. Furthermore, pH in both colon and feces decreased significantly with 1.0 and 0.5 pH point, respectively. However, despite this alteration of intestinal bacterial flora, no significant effect on relevant parameters of bile salt metabolism and cholate kinetics was found. The present data in rats do not support the hypothesis that prebiotics naturally present in human milk contribute to a larger bile salt pool size or altered bile salt pool kinetics.  相似文献   
22.
Selenium is a critical trace element, with deficiency associated with numerous diseases including cardiovascular disease, diabetes, and cancer. Selenomethionine (SeMet; a selenium analogue of the amino acid methionine, Met) is a major form of organic selenium and an important dietary source of selenium for selenoprotein synthesis in vivo. As selenium compounds can be readily oxidized and reduced, and selenocysteine residues play a critical role in the catalytic activity of the key protective enzymes glutathione peroxidase and thioredoxin reductase, we investigated the ability of SeMet (and its sulfur analogue, Met) to scavenge hydroperoxides present on amino acids, peptides, and proteins, which are key intermediates in protein oxidation. We show that SeMet, but not Met, can remove these species both stoichiometrically and catalytically in the presence of glutathione (GSH) or a thioredoxin reductase (TrxR)/thioredoxin (Trx)/NADPH system. Reaction of the hydroperoxide with SeMet results in selenoxide formation as detected by HPLC. Recycling of the selenoxide back to SeMet occurs rapidly with GSH, TrxR/NADPH, or a complete TrxR/Trx/NADPH reducing system, with this resulting in an enhanced rate of peroxide removal. In the complete TrxR/Trx/NADPH system loss of peroxide is essentially stoichiometric with NADPH consumption, indicative of a highly efficient system. Similar reactions do not occur with Met under these conditions. Studies using murine macrophage-like J774A.1 cells demonstrate a greater peroxide-removing capacity in cells supplemented with SeMet, compared to nonsupplemented controls. Overall, these findings demonstrate that SeMet may play an important role in the catalytic removal of damaging peptide and protein oxidation products.  相似文献   
23.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号