首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29030篇
  免费   3698篇
  国内免费   30篇
  32758篇
  2016年   248篇
  2015年   315篇
  2014年   400篇
  2013年   666篇
  2012年   638篇
  2011年   691篇
  2010年   484篇
  2009年   405篇
  2008年   589篇
  2007年   644篇
  2006年   611篇
  2005年   615篇
  2004年   620篇
  2003年   636篇
  2002年   646篇
  2001年   1856篇
  2000年   1829篇
  1999年   1436篇
  1998年   473篇
  1997年   472篇
  1996年   480篇
  1995年   422篇
  1994年   426篇
  1993年   420篇
  1992年   1069篇
  1991年   1083篇
  1990年   1065篇
  1989年   1028篇
  1988年   960篇
  1987年   900篇
  1986年   769篇
  1985年   746篇
  1984年   586篇
  1983年   508篇
  1982年   367篇
  1981年   342篇
  1980年   331篇
  1979年   561篇
  1978年   448篇
  1977年   412篇
  1976年   338篇
  1975年   455篇
  1974年   469篇
  1973年   414篇
  1972年   393篇
  1971年   310篇
  1970年   258篇
  1969年   240篇
  1968年   225篇
  1967年   205篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Kynurenic acid is a broad-spectrum excitatory amino acid (EAA) receptor antagonist which is present in the mammalian central nervous system. We describe a method for the measurement of kynurenic acid using isocratic reverse-phase high-performance liquid chromatography (HPLC) with fluorometric detection enhanced by Zn2+ as a postcolumn reagent. The method requires no prior sample preparation procedures other than extraction with 0.1 M HClO4. The reliability of the primary fluorometric method was verified by comparing measurements of tissue concentrations of kynurenic acid in human cerebral cortex and putamen using three different methods of separation with fluorometric detection, as well as four methods utilizing HPLC with coulometric electrode array system (CEAS) detection. All seven methods produced comparable results. The concentration of kynurenic acid in human cerebral cortex was 2.07 +/- 0.61 pmol/mg protein, and in human putamen, 3.38 +/- 0.81 pmol/mg protein. Kynurenic acid was also found to be present in human cerebrospinal fluid (CSF) at a concentration of 5.09 +/- 1.04 nM. The regional distribution of kynurenic acid in the rat brain was examined. Kynurenic acid concentrations were highest in brainstem (149.6 fmol/mg protein) and olfactory bulb (103.9 fmol/mg protein) and lowest in thalamus (26.0 fmol/mg protein). There were no significant postmortem changes in kynurenic acid concentrations in cerebral cortex, hippocampus, and striatum at intervals ranging from 0 to 24 h. Perfusion of the cerebral vasculature with normal saline prior to sacrifice did not significantly alter kynurenic acid content in rat hippocampus, cerebral cortex, or striatum. The analytical methods described are the most sensitive (10-30 fmol injection-1) and specific (utilizing both excitation and emissions properties and electrochemical reaction potentials, respectively) methods for determining kynurenic acid in brain tissue extracts and CSF. These methods should prove useful in examining whether kynurenic acid modulates EAA-mediated neurotransmission under physiologic conditions, as well as in determining the role of kynurenic acid in excitotoxic neuronal death.  相似文献   
992.
The two major components of the acidic glycolipid fraction from the pupae of Calliphora vicina were isolated using high-performance liquid chromatography. The acidic moiety was identified as glucuronic acid by beta-glucuronidase cleavage and gas chromatographic analysis as the pentafluoropropionyl derivative. The structures of the carbohydrate moiety were elucidated by peracetylation, methylation, exoglycosidase cleavage, fast-atom-bombardment mass spectrometric and 1H-nuclear magnetic resonance spectroscopic analysis. The only difference between the two hexasaccharide variants was the presence, in one of them, of a between the two hexasaccharide variants was the presence, in one of them, of a phosphoethanolamine (AeP) sidechain on the third sugar of the sequence, i.e. N-acetylglucosamine. The composition of the ceramide moiety was dominated by a C20:0 fatty acid (arachidic acid) and a C14:1 sphingoid base (tetradecasphing-4-enine). The chemical structures of the two insect acidic glycosphingolipids were determined to be: GlcA(beta 1-3)Gal-(beta 1-3)GalNAc(beta 1-4)GlcNAc(beta 1-3)Man (beta 1-4)Glc(beta 1-1)Cer; GlcA(beta 1-3)Gal(beta 1-3)GalNAc(beta 1-4)[2AeP-6]-GlcNAc(beta 1-3) Man(beta 1-4)Glc(beta 1-1)Cer. Such glucuronic-acid-containing insect glycosphingolipids have been given the generic name arthrosides, with the implied synonymity to the gangliosides.  相似文献   
993.
The site of interaction of aminoacyl-tRNA with elongation factor Tu   总被引:11,自引:3,他引:8       下载免费PDF全文
We have used RNases T1, T2 and A to digest two aminoacyl-tRNAs, Escherichia coli Phe-tRNAPhe and E. coli Met- tRNAMetm both in the naked forms and in ternary complexes with E. coli elongation factor Tu (EF-Tu) and GTP. An analysis of the 'footprinting' results has led to an interpretation that has localized the part of the three-dimensional structure of aminoacyl-tRNA covered by the protein in the ternary complex. In terms of the three-dimensional structure of tRNA established for yeast tRNAPhe, EF-Tu covers the aa-end, aa-stem, T-stem, and extra loop on the side of the L-shaped tRNA that exposes the extra loop.  相似文献   
994.
Subpopulations of different proliferative status are determined during cell-density dependent proliferation of 3T3 cells. From these data the probability of conversion of proliferative to quiescent cells is derived and found to correlate well with published data on binding of growth-inhibiting factors secreted from growth-inhibited cells.Based on material presented at the Symposium Intercellular Communication Stuttgart, September 16–17, 1982  相似文献   
995.
The binding of fibronectin to gelatin-agarose was strictly dependent on pH, having a pH optimum of 7-9. The binding was strongly inhibited by increasing ionic strength. A chemical modification of lysyl and arginyl groups of fibronectin abolished the binding activity. The anionic detergents sodium dodecyl sulphate and sodium deoxycholate in concentrations of 10-100mM had the same effect. The binding was not affected by the non-ionic detergents Triton X-100, Tween 20 or Lubrol WX. The results demonstrate an important role of ionic interactions in the binding of fibronectin to gelatin. Absence of inhibition by non-ionic detergents suggests that hydrophobic interactions contribute relatively little to the binding of fibronectin to gelatin.  相似文献   
996.
Mechanism of the anticoagulant action of heparin   总被引:20,自引:0,他引:20  
Summary The anticoagulant effect of heparin, a sulfated glycosaminoglycan produced by mast cells, requires the participation of the plasma protease inhibitor antithrombin, also called heparin cofactor. Antithrombin inhibits coagulation proteases by forming equimolar, stable complexes with the enzymes. The formation of these complexes involves the attack by the enzyme of a specific Arg-Ser bond in the carboxy-terminal region of the inhibitor. The complexes so formed are not dissociated by denaturing solvents, which indicates that a covalent bond may contribute to their stability. This bond may be an acyl bond between the active-site serine of the enzyme and the arginine of the cleaved reactive bond of the inhibitor. However, the native complexes dissociate slowly at near-neutral pH into free enzyme and a modified inhibitor, cleaved at the reactive bond. So, antithrombin apparently functions as a pseudo-substrate that traps the enzyme in a kinetically stable complex.The reactions between antithrombin and coagulation proteases are slow in the absence of heparin. However, optimal amounts of heparin accelerate these reactions up to 2 000-fold, thereby efficiently preventing the formation of fibrin in blood. The accelerating effect, and thus the anticoagulant activity, is shown by only about one-third of the molecules in all heparin preparations, while the remaining molecules are almost inactive. The highly active molecules bind tightly to antithrombin, i.e. with a binding constant of slightly below 108 M–1 at physiological ionic strength, while the relatively inactive molecules bind about a thousand-fold more weakly. The binding of the high-affinity heparin to antithrombin is accompanied by a conformational change in the inhibitor that is detectable by spectroscopic and kinetic methods. This conformational change follows an initial, weak binding of heparin to antithrombin and causes the tight interaction between polysaccharide and inhibitor that is prerequisite to heparin anticoagulant activity. It has also been postulated that the conformational change leads to a more favourable exposure of the reactive site of antithrombin, thereby allowing the rapid interaction with the proteases.Heparin also binds to the coagulation proteases. Recent studies indicate that this binding is weaker and less specific that the binding to antithrombin. Nevertheless, for some enzymes, thrombin, Factor IXa and Factor XIa, an interaction between heparin and the protease, in addition to that between the polysaccharide and antithrombin; apparently is involved in the accelerated inhibition of the enzymes. The effect of this interaction may be to approximate enzyme with inhibitor in an appropriate manner. However, the bulk of the evidence available indicates that binding of heparin to the protease alone cannot be responsible for the accelerating effect of the polysaccharide on the antithrombin-protease reaction.Heparin acts as a catalyst in the antithrombin-protease reaction, i.e. it accelerates the reaction in non-stoichiometric amounts and is not consumed during the reaction. This ability can be explained by heparin being released from the antithrombin-protease complex for renewed binding to antithrombin, once the complex has been formed. Such a decresed affinity of heparin for the antithrombin complex, compared to the affinity for antithrombin alone, has been demonstrated.The structure of the antithrombin-binding region in heparin has been investigated following the isolation of oligosaccharides with high affinity for antithrombin. The smallest such oligosaccharide, an octasaccharide, obtained after partial random depolymerization of heparin with nitrous acid, was found to contain a unique glucosamine-3-O-sulfate group, which could not be detected in other portions of the high affinity heparin molecule and which was absent in heparin with low affinity for antithrombin. The actual antithrombin-binding region within this octasaccharide molecule has been identified as a pentasaccharide sequence with he predominant structure: N-acetyl-D-glucosamine(6-O-SO3)D-glucoronic acidD-glucosamine(N-SO3;3,6-di-O-SO3)L-iduronic acid(2-O-SO3)D-glucosamine(N-SO3;6-O-SO3). In addition to the 3-O-sulfate group, both N-sulfate groups as well as the 6-O-sulfate group of the N-acetylated glucosamine unit appear to be essential for the interaction with antithrombin. The remarkably constant structure of this sequence, as compared to other regions of the heparin molecule, suggests a strictly regulated mechanism of biosynthesis.The ability of heparin to potentiate the inhibition of blood coagulation by antithrombin generally decreases with decreasing molecular weight of the polysaccharide. However, individual coagulation enzymes differ markedly with regard to this molecular-weight dependence. Oligosaccharides in the extreme low-molecular weight range, i.e. octa- to dodecasaccharides, with high affinity for antithrombin have high anti-Factor Xa-activity but are virtually unable to potentiate the inhibition of thrombin. Furthermore, such oligosaccharides are ineffective in preventing experimentally induced venous thrombosis in rabbits. Slightly larger oligosaccharides, containing 16 to 18 monosaccharide residues, show significant anti-thrombin as well as antithrombotic activities, yet have little effect on overall blood coagulation. These findings indicate that the affinity of a heparin fragment for antithrombin is not in itself a measure of the ability to prevent venous thrombo-genesis, and that the anti-Factor Xa activity of heparin is only a partial expression of its therapeutic potential as an antithrombotic agent.The biological role of the interaction between heparin and antithrombin is unclear. In addition to a possible function in the regulation of hemostasis, endogenous heparin may serve as a regulator of extravascular serine proteinases. Mouse peritoneal macrophages have been found to synthesize all the enzymes that constitute the extrinsic pathway of coagulation. Moreover, tissue thromboplastin is produced by these cells in response to a functional interaction with activated T-lymphocytes. The inhibition of this extravascular coagulation system by heparin, released from mast cells, may be potentially important in modulating inflammatory reactions.  相似文献   
997.
The nucleotide sequence of the rat epsilon-chain mRNA has been determined by sequencing cloned cDNA copies of the mRNA. The established sequence covers the coding region, the 3'-non coding region and most of the 5' non-coding region. A comparison with the nucleotide sequence of the human epsilon-chain constant region reveals that C3 and C4 are the most highly conserved domains. The rat epsilon-chain contains a C-terminal decapeptide which is not present in the human counterpart.  相似文献   
998.
Analysis of a group of human/rodent somatic cell hybrids with nucleic acid probes prepared from cloned human variable region (VH), junctional (JH), and constant region (C epsilon) heavy chain immunoglobulin genes indicates that all of these IgH genes are localized on the subtelomeric (q32) band of chromosome 14. Somatic cell hybrids were isolated in selective medium after fusing human fibroblasts with hprt- Chinese hamster cells. The human parental cells contained two translocation chromosomes representing a reciprocal translocation between chromosomes X and 14. Only those hybrid cell lines retaining a complete human autosome 14 or the X/14 translocation chromosome (i.e. containing band 14q32) retained the human IgH genes. Retention of these genes did not correlate with the presence of the other translocation chromosome, 14/X. These results indicate that all human IgH genes (VH, JH, and CH) map to the same chromosomal band (14q32) which is commonly involved in reciprocal translocations with human chromosome 8 (8q24) in B-cell neoplasms.  相似文献   
999.
The technique of two-dimensional (2-D) gel electrophoresis was sued to identify five human X-linked gene products in crude cell extracts of mouse-human and Chinese hamster-human somatic cell hybrids. The human origin of these five polypeptides was demonstrated by their comigration with human fibroblast proteins and their failure to comigrate with polypeptides in extracts from the mouse or hamster parental cells. All five polypeptides were present in extracts of rodent-human hybrids that contained a human X chromosome, but were not found in extracts of cells that lacked a human X chromosome. Chromosome analysis of the hybrid clones revealed that the human X chromosome is both necessary and sufficient for the expression of the five polypeptides, designated pX-24, pX-27, pX-37, pX-40, and pX-56. pX-56 can be identified as the human X-linked enzyme glucose-6-phosphate dehydrogenase (G6PD) (E.C.1.1.1.49), while polypeptides pX-24, pX-27, pX-37 and pX-40 have molecular properties unlike those of known human X-linked gene products. pX-24 appears to be a membrane-bound protein that maps to the distal portion of the long arm of the human X chromosome, while pX-27, pX-37, and pX-40 are soluble proteins that map to the proximal long arm or to the short arm of the human X chromosome. 2-D gel electrophoretic analysis of extracts from somatic cell hybrids provides a general method for identifying polypeptides in crude cell extracts coded for by any specific chromosome and can be used to study primary gene products not previously amenable to genetic analysis.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号