首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1913篇
  免费   194篇
  国内免费   1篇
  2108篇
  2021年   18篇
  2020年   17篇
  2019年   17篇
  2018年   21篇
  2017年   34篇
  2016年   52篇
  2015年   71篇
  2014年   69篇
  2013年   103篇
  2012年   161篇
  2011年   117篇
  2010年   81篇
  2009年   59篇
  2008年   110篇
  2007年   98篇
  2006年   98篇
  2005年   106篇
  2004年   68篇
  2003年   78篇
  2002年   74篇
  2001年   43篇
  2000年   42篇
  1999年   39篇
  1998年   24篇
  1997年   24篇
  1996年   22篇
  1995年   16篇
  1994年   18篇
  1993年   22篇
  1992年   32篇
  1991年   11篇
  1990年   16篇
  1989年   12篇
  1988年   10篇
  1987年   19篇
  1986年   12篇
  1985年   13篇
  1984年   12篇
  1983年   14篇
  1982年   21篇
  1981年   14篇
  1980年   15篇
  1977年   10篇
  1976年   12篇
  1975年   12篇
  1974年   11篇
  1970年   14篇
  1969年   12篇
  1968年   11篇
  1966年   12篇
排序方式: 共有2108条查询结果,搜索用时 0 毫秒
991.
K. H. Albrecht  E. M. Eicher 《Genetics》1997,147(3):1267-1277
The Sry (sex determining region, Y chromosome) open reading frame from mice representing four species of the genus Mus was sequenced in an effort to understand the conditional dysfunction of some M. domesticus Sry alleles when present on the C57BL/6J inbred strain genetic background and to delimit the functionally important protein regions. Twenty-two Sry alleles were sequenced, most from wild-derived Y chromosomes, including 11 M. domesticus alleles, seven M. musculus alleles and two alleles each from the related species M. spicilegus and M. spretus. We found that the HMG domain (high mobility group DNA binding domain) and the unique regions are well conserved, while the glutamine repeat cluster (GRC) region is quite variable. No correlation was found between the predicted protein isoforms and the ability of a Sry allele to allow differentiation of ovarian tissue when on the C57BL/6J genetic background, strongly suggesting that the cause of this sex reversal is not the Sry protein itself, but rather the regulation of SRY expression. Furthermore, our interspecies sequence analysis provides compelling evidence that the M. musculus and M. domesticus SRY functional domain is contained in the first 143 amino acids, which includes the HMG domain and adjacent unique region (UR-2).  相似文献   
992.
Summary Among zygotes of Platynereis dumerilii treated with cytochalasin B (CCB) prior to first cleavage, a wide variety of developmental effects were observed. One effect is a delay in the first cleavage. Treated embryos may skip the first or even more than one cleavage cycle and become multinucleated. Once these eggs start cleaving their cleavage plane takes the same position as in synchronously fertilized controls. Accordingly, the first cleavage in embryos having skipped the first normal cleavage cycle is meridional and equal, but their second cleavage is equatorial as in the third cleavage in controls. None of the embryos that were observed to skip early cleavages showed normal organogenesis, but developed into vesicle-shaped embryos with little cytological differentiation. Another effect of CCB treatment is altered blastomere size in those embryos which begin cleaving in synchrony with controls. While the majority of treated embryos followed a normal cleavage pattern, i.e. they cleaved at the right time and inequally, some of them cleaved equally or almost equally (adequally). Most of these embryos showed cleavage defects in subsequent cleavage cycles and became abnormal vesicle-shaped embryos. However, some of these embryos cleaving on schedule and equally or adequally developed into juvenile worms showing complete duplication of urites and parapodial rows (0.3% of all treated eggs) and are described as Janus duplicitates. This means that the occurrence of duplicitates and geometrically altered first cleavage patterns are correlated phenomena. The character and origin of the duplications and the consequences for dorsoventral polarity are discussed.  相似文献   
993.
AimAlthough patterns of biodiversity across the globe are well studied, there is still a controversial debate about the underlying mechanisms and their generality across biogeographic scales. In particular, it is unclear to what extent diversity patterns along environmental gradients are directly driven by abiotic factors, such as climate, or indirectly mediated through biotic factors, such as resource effects on consumers.LocationAndes, Southern Ecuador; Mt. Kilimanjaro, Tanzania.MethodsWe studied the diversity of fleshy‐fruited plants and avian frugivores at the taxonomic level, that is, species richness and abundance, as well as at the level of functional traits, that is, functional richness and functional dispersion. We compared two important biodiversity hotspots in mountain systems of the Neotropics and Afrotropics. We used field data of plant and bird communities, including trait measurements of 367 plant and bird species. Using structural equation modeling, we disentangled direct and indirect effects of climate and the diversity of plant communities on the diversity of bird communities.ResultsWe found significant bottom‐up effects of fruit diversity on frugivore diversity at the taxonomic level. In contrast, climate was more important for patterns of functional diversity, with plant communities being mostly related to precipitation, and bird communities being most strongly related to temperature.Main conclusionsOur results illustrate the general importance of bottom‐up mechanisms for the taxonomic diversity of consumers, suggesting the importance of active resource tracking. Our results also suggest that it might be difficult to identify signals of ecological fitting between functional plant and animal traits across biogeographic regions, since different species groups may respond to different climatic drivers. This decoupling between resource and consumer communities could increase under future climate change if plant and animal communities are consistently related to distinct climatic drivers.  相似文献   
994.
995.
The phosphatidylinositide-3-kinase (PI3K) signaling pathway is critical for multiple cellular functions including metabolism, proliferation, angiogenesis, and apoptosis, and is the most commonly altered pathway in human cancers. Recently, we developed a novel mouse model of colon cancer in which tumors are initiated by a dominant active PI3K (FC PIK3ca*). The cancers in these mice are moderately differentiated invasive mucinous adenocarcinomas of the proximal colon that develop by 50 days of age. Interestingly, these cancers form without a benign intermediary or aberrant WNT signaling, indicating a non-canonical mechanism of tumorigenesis. Since these tumors are dependent upon the PI3K pathway, we investigated the potential for tumor response by the targeting of this pathway with rapamycin, an mTOR inhibitor. A cohort of FC PIK3ca* mice were treated with rapamycin at a dose of 6 mg/kg/day or placebo for 14 days. FDG dual hybrid PET/CT imaging demonstrated a dramatic tumor response in the rapamycin arm and this was confirmed on necropsy. The tumor tissue remaining after treatment with rapamycin demonstrated increased pERK1/2 or persistent phosphorylated ribosomal protein S6 (pS6), indicating potential resistance mechanisms. This unique model will further our understanding of human disease and facilitate the development of therapeutics through pharmacologic screening and biomarker identification.  相似文献   
996.

Background

A link between severe mental stress and shorter telomere length (TL) has been suggested. We analysed the impact of Posttraumatic Stress Disorder (PTSD) on TL in the general population and postulated a dose-dependent TL association in subjects suffering from partial PTSD compared to full PTSD.

Methods

Data are derived from the population-based KORA F4 study (2006–2008), located in southern Germany including 3,000 individuals (1,449 men and 1,551 women) with valid and complete TL data. Leukocyte TL was measured using a quantitative PCR-based technique. PTSD was assessed in a structured interview and by applying the Posttraumatic Diagnostic Scale (PDS) and the Impact of Event Scale (IES). A total of 262 (8.7%) subjects qualified for having partial PTSD and 51 (1.7%) for full PTSD. To assess the association of PTSD with the average TL, linear regression analyses with adjustments for potential confounding factors were performed.

Results

The multiple model revealed a significant association between partial PTSD and TL (beta = −0.051, p = 0.009) as well as between full PTSD and shorter TL (beta = −0.103, p = 0.014) indicating shorter TL on average for partial and full PTSD. An additional adjustment for depression and depressed mood/exhaustion gave comparable beta estimations.

Conclusions

Participants with partial and full PTSD had significantly shorter leukocyte TL than participants without PTSD. The dose-dependent variation in TL of subjects with partial and full PTSD exceeded the chronological age effect, and was equivalent to an estimated 5 years in partial and 10 years in full PTSD of premature aging.  相似文献   
997.
Efficient catabolism of cellular triacylglycerol (TG) stores requires the TG hydrolytic activity of adipose triglyceride lipase (ATGL). The presence of comparative gene identification-58 (CGI-58) strongly increased ATGL-mediated TG catabolism in cell culture experiments. Mutations in the genes coding for ATGL or CGI-58 in humans cause neutral lipid storage disease characterized by TG accumulation in multiple tissues. ATGL gene mutations cause a severe phenotype especially in cardiac muscle leading to cardiomyopathy that can be lethal. In contrast, CGI-58 gene mutations provoke severe ichthyosis and hepatosteatosis in humans and mice, whereas the role of CGI-58 in muscle energy metabolism is less understood. Here we show that mice lacking CGI-58 exclusively in muscle (CGI-58KOM) developed severe cardiac steatosis and cardiomyopathy linked to impaired TG catabolism and mitochondrial fatty acid oxidation. The marked increase in ATGL protein levels in cardiac muscle of CGI-58KOM mice was unable to compensate the lack of CGI-58. The addition of recombinant CGI-58 to cardiac lysates of CGI-58KOM mice completely reconstituted TG hydrolytic activities. In skeletal muscle, the lack of CGI-58 similarly provoked TG accumulation. The addition of recombinant CGI-58 increased TG hydrolytic activities in control and CGI-58KOM tissue lysates, elucidating the limiting role of CGI-58 in skeletal muscle TG catabolism. Finally, muscle CGI-58 deficiency affected whole body energy homeostasis, which is caused by impaired muscle TG catabolism and increased cardiac glucose uptake. In summary, this study demonstrates that functional muscle lipolysis depends on both CGI-58 and ATGL.  相似文献   
998.

Key message

We developed a universally applicable planning tool for optimizing the allocation of resources for one cycle of genomic selection in a biparental population. The framework combines selection theory with constraint numerical optimization and considers genotype×? environment interactions.

Abstract

Genomic selection (GS) is increasingly implemented in plant breeding programs to increase selection gain but little is known how to optimally allocate the resources under a given budget. We investigated this problem with model calculations by combining quantitative genetic selection theory with constraint numerical optimization. We assumed one selection cycle where both the training and prediction sets comprised double haploid (DH) lines from the same biparental population. Grain yield for testcrosses of maize DH lines was used as a model trait but all parameters can be adjusted in a freely available software implementation. An extension of the expected selection accuracy given by Daetwyler et al. (2008) was developed to correctly balance between the number of environments for phenotyping the training set and its population size in the presence of genotype?×?environment interactions. Under small budget, genotyping costs mainly determine whether GS is superior over phenotypic selection. With increasing budget, flexibility in resource allocation increases greatly but selection gain leveled off quickly requiring balancing the number of populations with the budget spent for each population. The use of an index combining phenotypic and GS predicted values in the training set was especially beneficial under limited resources and large genotype × environment interactions. Once a sufficiently high selection accuracy is achieved in the prediction set, further selection gain can be achieved most efficiently by massively expanding its size. Thus, with increasing budget, reducing the costs for producing a DH line becomes increasingly crucial for successfully exploiting the benefits of GS.  相似文献   
999.
Many disorders are characterised by changes in O-glycosylation, but analysis of O-glycosylation has been limited by the availability of specific endo- and exo-glycosidases. As a result chemical methods are employed. However, these may give rise to glycan degradation, so therefore novel O-glycosidases are needed. Artificial substrates do not always identify every glycosidase activity present in an extract. To overcome this, an HPLC-based protocol for glycosidase identification from microbial culture was developed using natural O-glycans and O-glycosylated glycoproteins (porcine stomach mucin and fetuin) as substrates. O-glycans were released by ammonia-based β-elimination for use as substrates, and the bacterial culture supernatants were subjected to ultrafiltration to separate the proteins from glycans and low molecular size molecules. Two bacterial cultures, the psychrotroph Arthrobacter C1-1 and a Corynebacterium isolate, were examined as potential sources of novel glycosidases. Arthrobacter C1-1 culture contained a β-galactosidase and N-acetyl-β-glucosaminidase when assayed using 4-methylumbelliferyl substrates, but when defucosylated O-glycans from porcine stomach mucin were used as substrate, the extract did not cleave β-linked galactose or N-acetylglucosamine. Sialidase activity was identified in Corynebacterium culture supernatant, which hydrolysed sialic acid from fetuin glycans. When both culture supernatants were assayed using the glycoproteins as substrate, neither contained endoglycosidase activity. This method may be applied to investigate a microbial or other extract for glycosidase activity, and has potential for scale-up on high-throughput platforms.  相似文献   
1000.
Nager syndrome (MIM #154400) is the best-known preaxial acrofacial dysostosis, mainly characterized by craniofacial and preaxial limb anomalies. The craniofacial abnormalities mainly consist of downslanting palpebral fissures, malar hypoplasia, micrognathia, external ear anomalies, and cleft palate. The preaxial limb defects are characterized by radial and thumb hypoplasia or aplasia, duplication of thumbs and proximal radioulnar synostosis. Haploinsufficiency of SF3B4 (MIM *605593), which encodes SAP49, a component of the pre-mRNA spliceosomal complex, has recently been identified as the underlying cause of Nager syndrome. In our study, we performed exome sequencing in two and Sanger sequencing of SF3B4 in further ten previously unreported patients with the clinical diagnosis of Nager syndrome, including one familial case. We identified heterozygous SF3B4 mutations in seven out of twelve patients. Four of the seven mutations were shown to be de novo; in three individuals, DNA of both parents was not available. No familial mutations were discovered. Three mutations were nonsense, three were frameshift mutations and one T > C transition destroyed the translation start signal. In three of four SF3B4 negative families, EFTUD2 was analyzed, but no pathogenic variants were identified. Our results indicate that the SF3B4 gene is mutated in about half of the patients with the clinical diagnosis of Nager syndrome and further support genetic heterogeneity for this condition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号