首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1846篇
  免费   184篇
  国内免费   1篇
  2021年   22篇
  2020年   17篇
  2019年   15篇
  2018年   20篇
  2017年   30篇
  2016年   45篇
  2015年   63篇
  2014年   60篇
  2013年   98篇
  2012年   157篇
  2011年   114篇
  2010年   77篇
  2009年   61篇
  2008年   112篇
  2007年   99篇
  2006年   96篇
  2005年   101篇
  2004年   67篇
  2003年   78篇
  2002年   73篇
  2001年   39篇
  2000年   40篇
  1999年   36篇
  1998年   24篇
  1997年   23篇
  1996年   16篇
  1995年   16篇
  1994年   17篇
  1993年   23篇
  1992年   31篇
  1991年   12篇
  1990年   16篇
  1989年   12篇
  1987年   16篇
  1986年   11篇
  1985年   13篇
  1984年   13篇
  1983年   14篇
  1982年   21篇
  1981年   15篇
  1980年   13篇
  1979年   10篇
  1978年   9篇
  1976年   12篇
  1975年   11篇
  1974年   10篇
  1970年   14篇
  1969年   11篇
  1968年   12篇
  1966年   13篇
排序方式: 共有2031条查询结果,搜索用时 15 毫秒
971.
N2O is a potent greenhouse gas involved in the destruction of the protective ozone layer in the stratosphere and contributing to global warming. The ecological processes regulating its emissions from soil are still poorly understood. Here, we show that the presence of arbuscular mycorrhizal fungi (AMF), a dominant group of soil fungi, which form symbiotic associations with the majority of land plants and which influence a range of important ecosystem functions, can induce a reduction in N2O emissions from soil. To test for a functional relationship between AMF and N2O emissions, we manipulated the abundance of AMF in two independent greenhouse experiments using two different approaches (sterilized and re-inoculated soil and non-mycorrhizal tomato mutants) and two different soils. N2O emissions were increased by 42 and 33% in microcosms with reduced AMF abundance compared to microcosms with a well-established AMF community, suggesting that AMF regulate N2O emissions. This could partly be explained by increased N immobilization into microbial or plant biomass, reduced concentrations of mineral soil N as a substrate for N2O emission and altered water relations. Moreover, the abundance of key genes responsible for N2O production (nirK) was negatively and for N2O consumption (nosZ) positively correlated to AMF abundance, indicating that the regulation of N2O emissions is transmitted by AMF-induced changes in the soil microbial community. Our results suggest that the disruption of the AMF symbiosis through intensification of agricultural practices may further contribute to increased N2O emissions.  相似文献   
972.
Several microRNAs (miRNAs) are associated with the molecular pathogenesis of hepatocellular carcinoma (HCC). However, previous studies analyzing the dysregulation of miRNAs in HCC show heterogeneous results. We hypothesized that part of this heterogeneity might be attributable to variations of miRNA expression deriving from the HCC capsule or the fibrotic septa within the peritumoral tissue used as controls. Tissue from surgically resected hepatitis C–associated HCC from six well-matched patients was microdissected using laser microdissection and pressure catapulting technique. Four distinct histologic compartments were isolated: tumor parenchyma (TP), fibrous capsule of the tumor (TC), tumor-adjacent liver parenchyma (LP), and cirrhotic septa of the tumor-adjacent liver (LC). MiRNA expression profiling analysis of 1105 mature miRNAs and precursors was performed using miRNA microarray. Principal component analysis and consecutive pairwise supervised comparisons demonstrated distinct patterns of expressed miRNAs not only for TP versus LP (e.g., intratumoral down-regulation of miR-214, miR-199a, miR-146a, and miR-125a; P< .05) but also for TC versus LC (including down-regulation within TC of miR-126, miR-99a/100, miR-26a, and miR-125b; P< .05). The tumor capsule therefore demonstrates a tumor-like phenotype with down-regulation of well-known tumor-suppressive miRNAs. Variations of co-analyzed fibrotic tissue within the tumor or in controls may have profound influence on miRNA expression analyses in HCC. Several miRNAs, which are proposed to be HCC specific, may indeed be rather associated to the tumor capsule. As miRNAs evolve to be important biomarkers in liver tumors, the presented data have important translational implications on diagnostics and treatment in patients with HCC.  相似文献   
973.

Background

Memory T-cells are mediators of transplant injury, and no therapy is known to prevent the development of cross-reactive memory alloimmunity. Activated vitamin D is immunomodulatory, and vitamin D deficiency, common in hemodialysis patients awaiting transplantation, is associated with a heightened alloimmune response. Thus, we tested the hypothesis that vitamin D3 supplementation would prevent alloreactive T-cell memory formation in vitamin D-deficient hemodialysis patients.

Methods and Findings

We performed a 12-month single-center pilot randomized, controlled trial of 50,000 IU/week of cholecalciferol (D3) versus no supplementation in 96 hemodialysis patients with serum 25(OH)D<25 ng/mL, measuring effects on serum 25(OH)D and phenotypic and functional properties of T-cells. Participants were randomized 2∶1 to active treatment versus control. D3 supplementation increased serum 25(OH)D at 6 weeks (13.5 [11.2] ng/mL to 42.5 [18.5] ng/mL, p<0.001) and for the duration of the study. No episodes of sustained hypercalcemia occurred in either group. Results of IFNγ ELISPOT-based panel of reactive T-cell assays (PRT), quantifying alloreactive memory, demonstrated greater increases in the controls over 1 year compared to the treatment group (delta PRT in treatment 104.8+/−330.8 vs 252.9+/−431.3 in control), but these changes in PRT between groups did not reach statistical significance (p = 0.25).

Conclusions

D3 supplements are safe, effective at treating vitamin D deficiency, and may prevent time-dependent increases in T-cell alloimmunity in hemodialysis patients, but their effects on alloimmunity need to be confirmed in larger studies. These findings support the routine supplementation of vitamin D-deficient transplant candidates on hemodialysis and highlight the need for large-scale prospective studies of vitamin D supplementation in transplant candidates and recipients.

Trial Registration

Clinicaltrials.gov NCT01175798  相似文献   
974.
Escherichia coli α-hemolysin (HlyA) is a pore-forming protein of 110 kDa belonging to the family of RTX toxins. A hydrophobic region between the amino acid residues 238 and 410 in the N-terminal half of HlyA has previously been suggested to form hydrophobic and/or amphipathic α-helices and has been shown to be important for hemolytic activity and pore formation in biological and artificial membranes. The structure of the HlyA transmembrane channel is, however, largely unknown. For further investigation of the channel structure, we deleted in HlyA different stretches of amino acids that could form amphipathic β-strands according to secondary structure predictions (residues 71–110, 158–167, 180–203, and 264–286). These deletions resulted in HlyA mutants with strongly reduced hemolytic activity. Lipid bilayer measurements demonstrated that HlyAΔ71–110 and HlyAΔ264–286 formed channels with much smaller single-channel conductance than wildtype HlyA, whereas their channel-forming activity was virtually as high as that of the wildtype toxin. HlyAΔ158–167 and HlyAΔ180–203 were unable to form defined channels in lipid bilayers. Calculations based on the single-channel data indicated that the channels generated by HlyAΔ71–110 and HlyAΔ264–286 had a smaller size (diameter about 1.4 to 1.8 nm) than wildtype HlyA channels (diameter about 2.0 to 2.6 nm), suggesting that in these mutants part of the channel-forming domain was removed. Osmotic protection experiments with erythrocytes confirmed that HlyA, HlyAΔ71–110, and HlyAΔ264–286 form defined transmembrane pores and suggested channel diameters that largely agreed with those estimated from the single-channel data. Taken together, these results suggest that the channel-forming domain of HlyA might contain β-strands, possibly in addition to α-helical structures.  相似文献   
975.
Mutant mice lacking the central region of the presynaptic active zone protein Bassoon were generated to establish the role of this protein in the assembly and function of active zones as sites of synaptic vesicle docking and fusion. Our data show that the loss of Bassoon causes a reduction in normal synaptic transmission, which can be attributed to the inactivation of a significant fraction of glutamatergic synapses. At these synapses, vesicles are clustered and docked in normal numbers but are unable to fuse. Phenotypically, the loss of Bassoon causes spontaneous epileptic seizures. These data show that Bassoon is not essential for synapse formation but plays an essential role in the regulated neurotransmitter release from a subset of glutamatergic synapses.  相似文献   
976.
977.
978.
The glutathione redox couple (GSH/GSSG) and hydrogen peroxide (H2O2) are central to redox homeostasis and redox signaling, yet their distribution within an organism is difficult to measure. Using genetically encoded redox probes in Drosophila, we establish quantitative in vivo mapping of the glutathione redox potential (EGSH) and H2O2 in defined subcellular compartments (cytosol and mitochondria) across the whole animal during development and aging. A chemical strategy to trap the in vivo redox state of the transgenic biosensor during specimen dissection and fixation expands the scope of fluorescence redox imaging to include the deep tissues of the adult fly. We find that development and aging are associated with redox changes that are distinctly redox couple-, subcellular compartment-, and tissue-specific. Midgut enterocytes are identified as prominent sites of age-dependent cytosolic H2O2 accumulation. A longer life span correlated with increased formation of oxidants in the gut, rather than a decrease.  相似文献   
979.
The thermoacidophilic archaeon Picrophilus torridus belongs to the Thermoplasmatales order and is the most acidophilic organism known to date, growing under extremely acidic conditions around pH 0 (pH(opt) 1) and simultaneously at high temperatures up to 65°C. Some genome features that may be responsible for survival under these harsh conditions have been concluded from the analysis of its 1.55 megabase genome sequence. A proteomic map was generated for P. torridus cells grown to the mid-exponential phase. The soluble fraction of the cells was separated by isoelectric focusing in the pH ranges 4-7 and 3-10, followed by a two dimension (2D) on SDS-PAGE gels. A total of 717 Coomassie collodial-stained protein spots from both pH ranges (pH 4-7 and 3-10) were excised and subjected to LC-MS/MS, leading to the identification of 665 soluble protein spots. Most of the enzymes of the central carbon metabolism were identified on the 2D gels, corroborating biochemically the metabolic pathways predicted from the P. torridus genome sequence. The 2D master gels elaborated in this study represent useful tools for physiological studies of this thermoacidophilic organism. Based on quantitative 2D gel electrophoresis, a proteome study was performed to find pH- or temperature-dependent differences in the proteome composition under changing growth conditions. The proteome expression patterns at two different temperatures (50 and 70°C) and two different pH conditions (pH 0.5 and 1.8) were compared. Several proteins were up-regulated under most stress stimuli tested, pointing to general roles in coping with stress.  相似文献   
980.
Staphylococcus aureus is both a prominent cause of nosocomial infections with significant morbidity and mortality and a commensal with nasal carriage in around 30% of the population. The rapid spread of multi-resistant strains necessitates novel therapeutic strategies, a challenging task because the species S. aureus and the host response against it are highly variable. In a prospective study among 2023 surgical and non-surgical patients, 12 patients developed S. aureus bacteremia. They were analysed in detail using a personalized approach. For each patient, the extracellular proteins of the infecting S. aureus strain were identified and the developing antibody response was assessed on 2-D immunoblots. S. aureus carriers showed clear evidence of strain-specific pre-immunization. In all immune-competent bacteremia patients, antibody binding increased strongly, in most cases already at diagnosis. In endogenous infections, the pattern of antibody binding was similar to the pre-infection pattern. In exogenous infections, in contrast, the pre-infection pattern was radically altered with the acquisition of new specificities. These were characteristic for individual patients. Nevertheless, a common signature of 11 conserved S. aureus proteins, recognized in at least half of the bacteremic patients, was identified. All patients mounted a dynamic antibody response to a subset of these proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号