首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   883篇
  免费   84篇
  2023年   8篇
  2022年   9篇
  2021年   13篇
  2020年   9篇
  2019年   9篇
  2018年   17篇
  2017年   10篇
  2016年   18篇
  2015年   24篇
  2014年   36篇
  2013年   60篇
  2012年   62篇
  2011年   50篇
  2010年   46篇
  2009年   25篇
  2008年   47篇
  2007年   36篇
  2006年   38篇
  2005年   23篇
  2004年   28篇
  2003年   23篇
  2002年   29篇
  2001年   20篇
  2000年   29篇
  1999年   25篇
  1998年   10篇
  1997年   8篇
  1996年   11篇
  1995年   9篇
  1994年   8篇
  1993年   10篇
  1992年   13篇
  1991年   12篇
  1990年   15篇
  1989年   11篇
  1988年   11篇
  1987年   11篇
  1986年   9篇
  1985年   7篇
  1984年   9篇
  1982年   7篇
  1980年   7篇
  1978年   6篇
  1977年   11篇
  1976年   5篇
  1975年   7篇
  1974年   12篇
  1973年   15篇
  1970年   5篇
  1967年   8篇
排序方式: 共有967条查询结果,搜索用时 15 毫秒
71.
Triacylglycerol analogue p-nitrophenyl phosphonates specifically react with the active-site serine of lipolytic enzymes to give covalent lipase-inhibitor complexes, mimicking the first transition state which is involved in lipase-mediated ester hydrolysis. Here we report on a new type of phosphonate inhibitors containing a polarity-sensitive fluorophore to monitor micropolarity around the active site of the enzyme in different solvents. The respective compounds are hexyl and methyl dimethylamino-naphthalenecarbonylethylmercaptoethoxy-phosphonates. The hexyl phosphonate derivative was reacted with lipases from Rhizopus oryzae (ROL), Chromobacterium viscosum (CVL), and Pseudomonas cepacia (PCL). The resulting lipid-protein complexes were characterized in solution with respect to water penetration into the lipid binding site and the associated conformational changes of the proteins as a consequence of solvent polarity changes. We found that the accessibility of the lipid-binding site in all lipases studied was lowest in water. It was much higher when the protein was dissolved in aqueous ethanol. These biophysical effects may contribute to the previously observed dramatic changes of enzyme functions such as activity and stereoselectivity depending on the respective solvents.  相似文献   
72.
Evaluation of cavitation in vivo is often based on recordings of high-pass filtered random high-frequency pressure fluctuations. We hypothesized that cavitation signal components are more appropriately assessed by a new method for extraction of random signal components of the pressure signals. We investigated three different valve types and found a high correlation between the two methods (r2: 0.8806-0.9887). The new method showed that the cavitation signal could be extracted without a priori knowledge needed for setting the high-pass filter cut off frequency, nor did it introduce bandwidth limitation of the cavitation signal.  相似文献   
73.
Glutathione deficiency has been associated with a number of neurodegenerative diseases including Lou Gehrig's disease, Parkinson's disease, and HIV. A crucial role for glutathione is as a free radical scavenger. Alzheimer's disease (AD) brain is characterized by oxidative stress, manifested by protein oxidation, lipid oxidation, oxidized glutathione, and decreased activity of glutathione S-transferase, among others. Reasoning that elevated levels of endogenous glutathione would offer protection against free radical-induced oxidative stress, rodents were given in vivo injections of N-acetylcysteine (NAC), a known precursor of glutathione, to study the vulnerability of isolated synaptosomal membranes treated with Fe2+/H2O2, a known hydroxyl free radical producer. Protein carbonyls, a marker of protein oxidation, were measured. NAC significantly increased endogenous glutathione levels in cortical synaptosome cytosol (P < 0.01). As reported previously, protein carbonyl levels of the Fe2+/H2O2-treated synaptosomes were significantly higher compared to that of non-treated controls (P < 0.01), consistent with increased oxidative stress. In contrast, protein carbonyl levels in Fe2+/H2O2-treated synaptosomes isolated from NAC-injected animals were not significantly different from saline-injected non-treated controls, demonstrating protection against hydroxyl radical induced oxidative stress. These results are consistent with the notion that methods to increase endogenous glutathione levels in neurodegenerative diseases associated with oxidative stress, including AD, may be promising.  相似文献   
74.
Several bacterial proteins are non-covalently anchored to the cell surface via an S-layer homology (SLH) domain. Previous studies have suggested that this cell surface display mechanism involves a non-covalent interaction between the SLH domain and peptidoglycan-associated polymers. Here we report the characterization of a two-gene operon, csaAB, for cell surface anchoring, in Bacillus anthracis. Its distal open reading frame (csaB) is required for the retention of SLH-containing proteins on the cell wall. Biochemical analysis of cell wall components showed that CsaB was involved in the addition of a pyruvyl group to a peptidoglycan-associated polysaccharide fraction, and that this modification was necessary for binding of the SLH domain. The csaAB operon is present in several bacterial species that synthesize SLH-containing proteins. This observation and the presence of pyruvate in the cell wall of the corresponding bacteria suggest that the mechanism described in this study is widespread among bacteria.  相似文献   
75.
76.
Physical and biological properties of the fungal cell wall are determined by the composition and arrangement of the structural polysaccharides. Cell wall polymers of fungi are classically divided into two groups depending on their solubility in hot alkali. We have analyzed the alkali-insoluble fraction of the Aspergillus fumigatus cell wall, which is the fraction believed to be responsible for fungal cell wall rigidity. Using enzymatic digestions with recombinant endo-beta-1,3-glucanase and chitinase, fractionation by gel filtration, affinity chromatography with immobilized lectins, and high performance liquid chromatography, several fractions that contained specific interpolysaccharide covalent linkages were isolated. Unique features of the A. fumigatus cell wall are (i) the absence of beta-1,6-glucan and (ii) the presence of a linear beta-1, 3/1,4-glucan, never previously described in fungi. Galactomannan, chitin, and beta-1,3-glucan were also found in the alkali-insoluble fraction. The beta-1,3-glucan is a branched polymer with 4% of beta-1,6 branch points. Chitin, galactomannan, and the linear beta-1, 3/1,4-glucan were covalently linked to the nonreducing end of beta-1, 3-glucan side chains. As in Saccharomyces cerevisiae, chitin was linked via a beta-1,4 linkage to beta-1,3-glucan. The data obtained suggested that the branching of beta-1,3-glucan is an early event in the construction of the cell wall, resulting in an increase of potential acceptor sites for chitin, galactomannan, and the linear beta-1,3/1,4-glucan.  相似文献   
77.
To identify the structural features required for regulation of the mitochondrial permeability transition pore (PTP) by ubiquinone analogs (Fontaine, E., Ichas, F., and Bernardi, P. (1998) J. Biol. Chem. 40, 25734-25740), we have carried out an analysis with quinone structural variants. We show that three functional classes can be defined: (i) PTP inhibitors (ubiquinone 0, decylubiquinone, ubiquinone 10, 2,3-dimethyl-6-decyl-1,4-benzoquinone, and 2,3,5-trimethyl-6-geranyl-1,4-benzoquinone); (ii) PTP inducers (2,3-dimethoxy-5-methyl-6-(10-hydroxydecyl)-1,4-benzoquinone and 2,5-dihydroxy-6-undecyl-1,4-benzoquinone); and (iii) PTP-inactive quinones that counteract the effects of both inhibitors and inducers (ubiquinone 5 and 2,3,5-trimethyl-6-(3-hydroxyisoamyl)-1,4-benzoquinone) . The structure-function correlation indicates that minor modifications in the isoprenoid side chain can turn an inhibitor into an activator, and that the methoxy groups are not essential for the effects of quinones on the PTP. Since the ubiquinone analogs used in this study have a similar midpoint potential and decrease mitochondrial production of reactive oxygen species to the same extent, these results support the hypothesis that quinones modulate the PTP through a common binding site rather than through oxidation-reduction reactions. Occupancy of this site can modulate the PTP open-closed transitions, possibly through secondary changes of the PTP Ca(2+) binding affinity.  相似文献   
78.
We explored the role of hypocretins in human narcolepsy through histopathology of six narcolepsy brains and mutation screening of Hcrt, Hcrtr1 and Hcrtr2 in 74 patients of various human leukocyte antigen and family history status. One Hcrt mutation, impairing peptide trafficking and processing, was found in a single case with early onset narcolepsy. In situ hybridization of the perifornical area and peptide radioimmunoassays indicated global loss of hypocretins, without gliosis or signs of inflammation in all human cases examined. Although hypocretin loci do not contribute significantly to genetic predisposition, most cases of human narcolepsy are associated with a deficient hypocretin system.  相似文献   
79.
Whether estradiol targets a subpopulation of gonadotrope cells was investigated in this study. Ovariectomized ewes (OVX) or OVX ewes immunized against GnRH and treated with hourly pulses of GnRH analogue (OVX-IMG) were killed at 6, 12, 16, and 24 h after administration of 50 microg of 17beta-estradiol (E(2)). Control ewes received no E(2) treatment. In OVX or OVX-IMG ewes killed 6 h after E(2) injection, a decrease in gonadotropin plasma levels was observed compared with non-E(2)-treated ewes. In contrast, a surge in gonadotropin plasma concentrations occurred in ewes killed 16 h after injection. The percentage of total immunoreactive gonadotrope cells among the pituitary cells was lower in E(2)-treated ewes compared with nontreated animals. The proportion of monohormonal LH cells was constant throughout the experiment, except at the surge peak, where it was enhanced. In the OVX ewes, the proportion of bihormonal LH/FSH cells was lower in the E(2)-treated ewes compared to the nontreated ewes (P: < 0.001), with a more pronounced decrease 16 h after E(2) injection. A slight increase occurred 12 h after E(2) injection compared with 6 h after injection (P: < 0.05). A similar pattern was observed in the OVX-IMG ewes, except at 12 h after E(2) injection, when no increase occurred. In both OVX and OVX-IMG ewes, injection of E(2) decreased FSHbeta mRNA expression but did not alter the relative levels of LHbeta mRNA. These data suggest that the negative feedback of E(2) on LH and FSH secretion mainly targets the bihormonal cells and occurs, at least in part, directly at the pituitary level. During the gonadotropin surge, the sustained FSH release from the bihormonal cells would induce a switch from bihormonal cells to monohormonal LH cells by depleting these cells of FSH.  相似文献   
80.
We studied mefloquine metabolism in cells and microsomes isolated from human and animal (monkey, dog, rat) livers. In both hepatocytes and microsomes, mefloquine underwent conversion to two major metabolites, carboxymefloquine and hydroxymefloquine. In human cells and microsomes these metabolites only were formed, as already demonstrated in vivo, while in other species several unidentified metabolites were also detected. After a 48 hr incubation with human and rat hepatocytes, metabolites accounted for 55-65% of the initial drug concentration, whereas in monkey and dog hepatocytes, mefloquine was entirely metabolized after 15 and 39 hrs, respectively. The consumption of mefloquine was less extensive in microsomes, and unchanged drug represented 60% (monkey) to 85-100% (human, dog, rat) of the total radioactivity after 5 hr incubations. The involvement of the cytochrome P450 3A subfamily in mefloquine biotransformation was suggested by several lines of evidence. Firstly, mefloquine metabolism was strongly increased in hepatic microsomes from dexamethasone-pretreated rats, and also in human and rat hepatocytes after prior treatment with a cytochrome P450 3A inducer. Secondly, mefloquine biotransformation in rifampycin-induced human hepatocytes was inhibited in a concentration-dependent manner by the cytochrome P450 3A inhibitor ketoconazole and thirdly, a strong correlation was found between erythromycin-N-demethylase activity (mediated by cytochrome P450 3A) and mefloquine metabolism in human microsomes (r=0.81, P < 0.05, N=13). Collectively, these findings concerning the role of cytochrome P450 3A in mefloquine metabolism may have important in vivo consequences especially with regard to the choice of agents used in multidrug antimalarial regimens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号