首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2304篇
  免费   381篇
  国内免费   1篇
  2686篇
  2021年   28篇
  2020年   21篇
  2019年   23篇
  2018年   31篇
  2017年   26篇
  2016年   49篇
  2015年   59篇
  2014年   73篇
  2013年   100篇
  2012年   125篇
  2011年   114篇
  2010年   61篇
  2009年   74篇
  2008年   105篇
  2007年   111篇
  2006年   92篇
  2005年   92篇
  2004年   95篇
  2003年   68篇
  2002年   71篇
  2001年   64篇
  2000年   60篇
  1999年   65篇
  1998年   28篇
  1997年   36篇
  1996年   31篇
  1995年   25篇
  1994年   37篇
  1993年   34篇
  1992年   46篇
  1991年   33篇
  1990年   39篇
  1989年   44篇
  1988年   58篇
  1987年   62篇
  1986年   46篇
  1985年   42篇
  1984年   39篇
  1983年   28篇
  1982年   31篇
  1981年   26篇
  1980年   19篇
  1979年   32篇
  1978年   24篇
  1977年   25篇
  1976年   21篇
  1975年   30篇
  1974年   27篇
  1973年   36篇
  1972年   20篇
排序方式: 共有2686条查询结果,搜索用时 0 毫秒
91.
The Drosophila olfactory genes OS-E and OS-F are members of a family of genes that encode insect odorant-binding proteins (OBPs). OBPs are believed to transport hydrophobic odorants through the aqueous fluid within olfactory sensilla to the underlying receptor proteins. The recent discovery of a large family of olfactory receptor genes in Drosophila raises new questions about the function, diversity, regulation, and evolution of the OBP family. We have investigated the OS-E and OS-F genes in a variety of Drosophila species. These studies highlight potential regions of functional significance in the OS-E and OS-F proteins, which may include a region required for interaction with receptor proteins. Our results suggest that the two genes arose by an ancient gene duplication, and that in some lineages, one or the other gene has been lost. In D. virilis, the OS-F gene shows a different spatial pattern of expression than in D. melanogaster. One of the OS-F introns shows a striking degree of conservation between the two species, and we identify a putative regulatory sequence within this intron. Finally, a phylogenetic analysis places both OS-E and OS-F within a large family of insect OBPs and OBP-like proteins.  相似文献   
92.
Mapping biological diversity is a high priority for conservation research, management and policy development, but few studies have provided diversity data at high spatial resolution from remote sensing. We used airborne imaging spectroscopy to map woody vascular plant species richness in lowland tropical forest ecosystems in Hawai’i. Hyperspectral signatures spanning the 400–2,500 nm wavelength range acquired by the NASA Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) were analyzed at 17 forest sites with species richness values ranging from 1 to 17 species per 0.1–0.3 ha. Spatial variation (range) in the shape of the AVIRIS spectra (derivative reflectance) in wavelength regions associated with upper-canopy pigments, water, and nitrogen content were well correlated with species richness across field sites. An analysis of leaf chlorophyll, water, and nitrogen content within and across species suggested that increasing spectral diversity was linked to increasing species richness by way of increasing biochemical diversity. A linear regression analysis showed that species richness was predicted by a combination of four biochemically-distinct wavelength observations centered at 530, 720, 1,201, and 1,523 nm (r 2 = 0.85, p < 0.01). This relationship was used to map species richness at approximately 0.1 ha resolution in lowland forest reserves throughout the study region. Future remote sensing studies of biodiversity will benefit from explicitly connecting chemical and physical properties of the organisms to remotely sensed data.  相似文献   
93.
Phosphorylase kinase, a regulatory enzyme of glycogenolysis in skeletal muscle, is a hexadecameric oligomer consisting of four copies each of a catalytic subunit (gamma) and three regulatory subunits (alpha, beta, and delta, the last being endogenous calmodulin). The enzyme is activated by a variety of effectors acting through its regulatory subunits. To probe the quaternary structure of nonactivated and activated forms of the kinase, we used the heterobifunctional, photoreactive cross-linker N-5-azido-2-nitrobenzoyloxysuccinimide. Mono-derivatization of the holoenzyme with the succinimidyl group, followed by photoactivation of the covalently attached azido group, resulted in intramolecular cross-linking to form two distinct heterodimers: a major (alphagamma) and a minor (betadelta) conjugate. Formation of both conjugates was significantly altered in activated conformations of the enzyme induced by phosphorylation, alkaline pH, and several allosteric activators (ADP, exogenous calmodulin/Ca2+, and Ca2+ alone). Of these activating mechanisms, all increased formation of alphagamma, except Ca2+ alone, which inhibited its formation. When cross-linking was carried out at alkaline pH or in the presence of ADP or exogenous calmodulin/Ca2+, the cross-linked enzyme remained activated following removal of the activators; however, cross-linking in the presence of Ca2+ resulted in sustained inhibition. The results indicate that perturbations in the subunit cross-linking forming the alphagamma dimer reflect the subsequent extent of sustained activation of the holoenzyme that is measured. The region cross-linked to the catalytic gamma subunit was confined to the C-terminal 1/6th of the alpha subunit, which contains known regulatory regions. These results suggest that activators of the phosphorylase kinase holoenzyme perturb interactions between the C-terminal region of the inhibitory alpha subunit and the catalytic gamma subunit, ultimately leading to activation of the latter.  相似文献   
94.
The (Brady)rhizobium nodulation gene products synthesize lipo-chitin oligosaccharide (LCO) signal molecules that induce nodule primordia on legume roots. In spot inoculation assays with roots of Vigna umbellata, Bradyrhizobium elkanii LCO and chemically synthesized LCO induced aberrant nodule structures, similar to the activity of these LCOs on Glycine soja (soybean). LCOs containing a pentameric chitin backbone and a reducing-end 2-O-methyl fucosyl moiety were active on V. umbellata. In contrast, the synthetic LCO-IV(C16:0), which has previously been shown to be active on G. soja, was inactive on V. umbellata. A B. japonicum NodZ mutant, which produces LCO without 2-O-methyl fucose at the reducing end, was able to induce nodule structures on both plants. Surprisingly, the individual, purified, LCO molecules produced by this mutant were incapable of inducing nodule formation on V. umbellata roots. However, when applied in combination, the LCOs produced by the NodZ mutant acted cooperatively to produce nodulelike structures on V. umbellata roots.  相似文献   
95.
We have examined the binding behavior and fluorescence characteristics of a series of novel ligands for the estrogen receptor (ER). These ligands are derivatives of 5,6,11,12-tetrahydrochrysene (THC), a structure that embodies a stilbene chromophore, found in many nonsteroidal estrogens, within a rigid tetracyclic system where it cannot easily be distorted from planarity, thus providing the conjugation and rigidity required for efficient fluorescence. Additional steric bulk, as trans-disposed ethyl substituents at the internal C-5 and C-11 positions, is required for the highest relative binding affinity (RBA), and the trans-5,11-diethyl-2,8-dihydroxy-THC derivative binds to ER with an affinity greater than that of estradiol. The replacement of one of the phenolic hydroxyl groups of this THC derivative with an electron-withdrawing group (COMe, COOMe, CONH2, CN, or NO2) yields unsymmetrical THCs with binding affinities 15-40% that of estradiol (E2). The fluorescence emission shifts from about 380 nm for the dihydroxy THC to 475-688 nm for the donor-acceptor THCs. The emission of these donor-acceptor THCs is highly solvatochromic and shifts to longer wavelengths as the solvent polarity increases. In ethanol, the fluorescence quantum yield of the first four of these compounds is high (phi f = 0.43-0.69), but the fifth compound, the nitro-THC, is almost nonemissive in protic solvents. When they are incubated with protein solutions containing ER (approximately 10(-9) M), the emission from the donor-acceptor THCs bound specifically to ER is in the 500-570-nm range, whereas fluorescence from non-receptor-bound fluorophores is in the 425-460-nm range. Thus, fluorescence from these probes bound specifically to ER could be measured under equilibrium conditions as well as after the removal of free and non-receptor-bound material by treatment with charcoal-dextran. This is one of the first demonstrations of ligands whose fluorescence is distinctly different when free, when bound to ER, or when bound to non-receptor proteins. It is also the first demonstration of ER assay by fluorescence under equilibrium conditions.  相似文献   
96.
97.
98.
Phage T4 endonuclease II (EndoII), a GIY-YIG endonuclease lacking a carboxy-terminal DNA-binding domain, was subjected to site-directed mutagenesis to investigate roles of individual amino acids in substrate recognition, binding, and catalysis. The structure of EndoII was modeled on that of UvrC. We found catalytic roles for residues in the putative catalytic surface (G49, R57, E118, and N130) similar to those described for I-TevI and UvrC; in addition, these residues were found to be important for substrate recognition and binding. The conserved glycine (G49) and arginine (R57) were essential for normal sequence recognition. Our results are in agreement with a role for these residues in forming the DNA-binding surface and exposing the substrate scissile bond at the active site. The conserved asparagine (N130) and an adjacent proline (P127) likely contribute to positioning the catalytic domain correctly. Enzymes in the EndoII subfamily of GIY-YIG endonucleases share a strongly conserved middle region (MR, residues 72 to 93, likely helical and possibly substituting for heterologous helices in I-TevI and UvrC) and a less strongly conserved N-terminal region (residues 12 to 24). Most of the conserved residues in these two regions appeared to contribute to binding strength without affecting the mode of substrate binding at the catalytic surface. EndoII K76, part of a conserved NUMOD3 DNA-binding motif of homing endonucleases found to overlap the MR, affected both sequence recognition and catalysis, suggesting a more direct involvement in positioning the substrate. Our data thus suggest roles for the MR and residues conserved in GIY-YIG enzymes in recognizing and binding the substrate.  相似文献   
99.
A comparison was made of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans. Although all three organisms reduced nitrate to dinitrogen gas, they did so at different rates and accumulated different kinds and amounts of intermediates. Their rates of anaerobic growth on nitrate varied about 1.5-fold; concomitant gas production varied more than 8-fold. Cell yields from nitrate varied threefold. Rates of gas production by resting cells incubated with nitrate, nitrite, or nitrous oxide varied 2-, 6-, and 15-fold, respectively, among the three species. The composition of the gas produced also varied markedly: Pseudomonas stutzeri produced only dinitrogen; Pseudomonas aeruginosa and Paracoccus denitrificans produced nitrous oxide as well; and under certain conditions Pseudomonas aeruginosa produced even more nitrous oxide than dinitrogen. Pseudomonas stutzeri and Paracoccus denitrificans rapidly reduced nitrate, nitrite, and nitrous oxide and were able to grow anaerobically when any of these nitrogen oxides were present in the medium. Pseudomonas aeruginosa reduced these oxides slowly and was unable to grow anaerobically at the expense of nitrous oxide. Furthermore, nitric and nitrous oxide reduction by Pseudomonas aeruginosa were exceptionally sensitive to inhibition by nitrite. Thus, although it has been well studied physiologically and genetically, Pseudomonas aeruginosa may not be the best species for studying the later steps of the denitrification pathway.  相似文献   
100.
Species are the most commonly recognised unit for conservation management, yet significant variation can exist below the level of taxonomic recognition and there is a lack of consensus around how a species might be defined. This definition has particular relevance when species designations are used to apportion conservation effort and when definitions might be made through legislation. Here, we use microsatellite DNA analyses to test the proposition that the last remaining populations of the endangered grassland earless dragon (Tympanocryptis pinguicolla) harbour substantial cryptic genetic variation. Our study provides strong evidence that long historical isolation and the recent impacts of urbanization, have led to genetic differentiation in microsatellite DNA allele frequencies and high numbers of private alleles among three genetic clusters. This differentiation is partially concordant with previous mitochondrial DNA analyses, which show the two regions (Canberra and Monaro) where this species exists, to be reciprocally monophyletic, but differs through the identification of a third genetic cluster that splits a northern Canberra cluster from that of southern Canberra. Our data also identify a stark contrast in population genetic structure between clusters such that high levels of genetic structure are evident in the highly urbanised Canberra region but not in the largely rural Monaro region. We conclude that this species, like many reptiles, harbours considerable cryptic variation and currently comprises three distinct and discrete units. These units could be classified as separate species for the purpose of conservation under the relevant Australian and international Acts drawing management appropriate to that status.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号