A number of cell types express inducible nitric-oxide synthase (NOS2) in response to exogenous insults such as bacterial lipopolysaccharide or proinflammatory cytokines. Although it has been known for some time that the N-terminal end of NOS2 suffers a post-translational modification, its exact identification has remained elusive. Using radioactive fatty acids, we show herein that NOS2 becomes thioacylated at Cys-3 with palmitic acid. Site-directed mutagenesis of this single residue results in the absence of the radiolabel incorporation. Acylation of NOS2 is completely indispensable for intracellular sorting and .NO synthesis. In fact, a C3S mutant of NOS2 is completely inactive and accumulates to intracellular membranes that almost totally co-localize with the Golgi marker beta-cop. Likewise, low concentrations of the palmitoylation blocking agents 2-Br-palmitate or 8-Br-palmitate severely affected the .NO synthesis of both NOS2 induced in muscular myotubes and transfected NOS2. However, unlike endothelial NOS, palmitoylation of inducible NOS is not involved in its targeting to caveolae. We have created 16 NOS2-GFP chimeras to inspect the effect of the neighboring residues of Cys-3 on the degree of palmitoylation. In this regard, the hydrophobic residue Pro-4 and the basic residue Lys-6 seem to be indispensable for palmitoylation. In addition, agents that block the endoplasmic reticulum to Golgi transit such as brefeldin A and monensin drastically reduced NOS2 activity leading to its accumulation in perinuclear areas. In summary, palmitoylation of NOS2 at Cys-3 is required for both its activity and proper intracellular localization. 相似文献
In an attempt to select potential biocontrol agents against Pythium spp. and Rhizoctonia spp. root pathogens for use in soilless systems, 12 promising bacteria were selected for further investigations. Sequence analysis of the 16S rRNA gene revealed that three strains belonged to the genus Enterobacter, whereas nine strains belonged to the genus Pseudomonas. In in vitro assays, one strain of Pseudomonas sp., Pf4, closely related to Pseudomonas protegens (formerly Pseudomonas fluorescens), showed noteworthy antagonistic activity against two strains of Pythium aphanidermatum and two strains of Rhizoctonia solani AG 1-IB, with average inhibition of mycelial growth >80%. Strain Pf4 was used for in vivo treatments on lamb’s lettuce against R. solani root rot in small-scale hydroponics. Pf4-treated and untreated plants were daily monitored for symptom development and after two weeks of infection, a significant protective effect of Pf4 against root rot was recorded. The survival and population density of Pf4 on roots were also checked, demonstrating a density above the threshold value of 105?CFU?g?1 of root required for disease suppression. Known loci for the synthesis of antifungal metabolites, detected using PCR, and draft-genome sequencing of Pf4 demonstrated that Pseudomonas sp. Pf4 has the potential to produce an arsenal of secondary metabolites (plt, phl, ofa and fit-rzx gene clusters) very similar to that of the well-known biocontrol P. protegens strain Pf-5. 相似文献
Introduction: B cell chronic lymphocytic leukemia (B-CLL) is a hematological malignancy considered as the most common leukemia in the Western world. The understanding of B cell differentiation is crucial for the diagnosis, prognosis, and treatment of the disease.
Areas covered: In this review, B-cell ontogeny and its relation with the CLL development, in combination with the proteomic approaches which could provide a deep characterization of the disease through the characterization of the cellular signaling pathways involved in the pathological cells is described.
Expert commentary: Although conventional strategies (genome sequencing, morphology assays, and immunophenotyping by flow cytometry and/or immunochemistry) have allowed the establishment of the disease stage based on different parameters, it is still necessary to utilize novel approaches (e.g., proteomics) that have the potential to simultaneously analyze thousands of molecules to improve understanding of CLL. 相似文献
Kawasaki disease is a multisystemic vasculitis that can result in coronary artery lesions. It predominantly affects young children and is characterized by prolonged fever, diffuse mucosal inflammation, indurative oedema of the hands and feet, a polymorphous skin rash and non‐suppurative lymphadenopathy. Coronary artery involvement is the most important complication of Kawasaki disease and may cause significant coronary stenosis resulting in ischemic heart disease. The introduction of intravenous immunoglobulin decreases the incidence of coronary artery lesions to less than 5%. The etiopathogenesis of this disease remains unclear. Several lines of evidence suggest that an interplay between a microbial infection and a genetic predisposition could take place in the development of the disease. In this review, we summarize the state of the art of pathogenetic mechanisms of Kawasaki disease underscoring the relevance of haematological features as a novel field of investigation. 相似文献
Optimal conditions for the extraction of casearins from Casearia sylvestris were determined using response surface methodology. The maceration and sonication extraction techniques were performed using a 3 x 3 x 3 full factorial design including three acidity conditions, three solvents of different polarities and three extraction times. The yields and selectivities of the extraction of casearins were significantly influenced by acidity conditions. Taking into account all variables tested, the optimal conditions for maceration extraction were estimated to involve treatment with dichloromethane saturated with ammonium hydroxide for 26 h. Similar yields and selectivities for casearins were determined for sonication extraction using the same solvent but for the much shorter time of 1 h. The best results for stabilisation of the fresh plant material were obtained using leaves that had been oven dried at 40 degrees C for 48 h. 相似文献
Glycerol/diol dehydratases (GDH) are enzymes that catalyse the production of propionate from 1,2-propanediol, and acrolein from glycerol. Acrolein reacts with dietary carcinogenic heterocyclic amines (HCA), reducing HCA mutagenicity, but is itself also an antimicrobial agent and toxicant. Gut microbial GDH activity has been suggested as an endogenous acrolein source; however, there is limited information on the potential of the intestinal microbiota to have GDH activity, and what impact it can have on the intestinal ecosystem and host health. We hypothesized that GDH activity of gut microbiota is determined by the abundance and distribution of GDH-active taxa and can be enhanced by supplementation of the GDH active Anaerobutyricum hallii, and tested this hypothesis combining quantitative profiling of gdh, model batch fermentations, microbiota manipulation, and kinetic modelling of acrolein formation. Our results suggest that GDH activity is a common trait of intestinal microbiota shared by a few taxa, which was dependent on overall gdh abundance. Anaerobutyricum hallii was identified as a key taxon in GDH metabolism, and its supplementation increased the rate of GDH activity and acrolein release, which enhanced the transformation of HCA and reduced fermentation activity. The findings of this first systematic study on acrolein release by intestinal microbiota indicate that dietary and microbial modulation might impact GDH activity, which may influence host health. 相似文献
Curcumin is a phytochemical with antiinflammatory, antioxidant and anticarcinogenic activities. Apparently, curcumin is not genotoxic in vivo, but in vitro copper and curcumin interactions induce genetic damage. The aim of this study was to test if in vivo copper excess induces DNA damage measured by comet and micronucleus assays in the presence of curcumin. We tested 0.2% curcumin in Balb-C mice at normal (13 ppm) and high (65, 130 and 390 ppm) copper ion concentrations. The comet and micronucleus assays were performed 48 hr after chemical application. Comet tail length in animals treated with 0.2% curcumin was not significantly different from the control. Animals exposed to copper cations (up to 390 ppm) exhibited higher oxidative DNA damage. Curcumin reduced the DNA damage induced by 390 ppm copper. We observed statistically significant increase in damage in individuals exposed to 390 ppm copper versus the control or curcumin groups, which was lowered by the presence of curcumin. Qualitative data on comets evidenced that cells from individuals exposed to 390 ppm copper had longer tails (categories 3 and 4) than in 390 ppm copper + curcumin. A statistically significant increase in frequency of micronucleated erythrocytes (MNE/10000TE) was observed only in 390 ppm copper versus the control and curcumin alone. Also cytotoxicity measured as the frequency of polychromatic erythrocytes (PE/1000TE) was attributable to 390 ppm copper. The lowest cytotoxic effect observed was attributed to curcumin. In vivo exposure to 0.2% curcumin for 48 hr did not cause genomic damage, while 390 ppm copper was genotoxic, but DNA damage induced by 390 ppm copper was diminished by curcumin. Curcumin seems to exert a genoprotective effect against DNA damage induced by high concentrations of copper cations. The comet and micronucleus assays prove to be suitable tools to detect DNA damage by copper in the presence of curcumin. 相似文献